-
公开(公告)号:CN112287611A
公开(公告)日:2021-01-29
申请号:CN202011026832.2
申请日:2020-09-25
Applicant: 北京临近空间飞行器系统工程研究所
IPC: G06F30/28 , G06F30/15 , G06F111/10 , G06F119/08
Abstract: 本发明提供了一种降低凸起物气动热干扰的局部外形优化方法,包括以下步骤:获得凸起物及附近舱体处的空间流场分布及表面热流分布;针对舱体凸起物处的流动结构开展分析,获得分离涡的大小并提取分离涡的尺寸特征;针对分离涡的尺寸特征在凸起物前方与舱体连接处进行外形优化;对优化后的流场结果和表面热流分布进行分析;若二维简化外形优化结果满足要求,使用真实三维外形验证结果也满足要求,则优化结束;若二维简化外形的优化不满足要求,则重新开始优化。本发明采用局部外形优化的方法对舱体局部高热流区域的热流量进行优化,可以大幅优化局部气动热环境,在根本上解决局部气动加热严酷的问题,减轻材料/结构的防隔热压力。
-
公开(公告)号:CN111780948A
公开(公告)日:2020-10-16
申请号:CN202010525480.9
申请日:2020-06-10
Applicant: 北京临近空间飞行器系统工程研究所
IPC: G01M9/06
Abstract: 本发明提供一种高超声速飞行试验中飞行器边界层转捩过程特性的测量方法,步骤如下:1)对飞行器周围流场进行仿真计算,获取飞行器表面流动特性;2)确定飞行器表面适合进行边界层转捩过程测量的区域;3)对飞行器的表面热流和结构热响应进行仿真计算,获取沿整个飞行剖面的飞行器表面热流和结构温度计算结果,对热流传感器和温度传感器进行选型;4)评估转捩测量区域内传感器安装的可行性;5)根据飞行器表面流动和转捩特性的分析结果,确定传感器位置、传感器测点个数和传感器测点间距;6)对步骤1)-5)确定的转捩过程测量方案获取的飞行试验数据进行分析,并画出表面热流或温度沿流向变化的曲线;7)对热流或温度沿流向变化曲线的变化规律进行分析,确定边界层转捩过程特性。
-
公开(公告)号:CN110806300A
公开(公告)日:2020-02-18
申请号:CN201910969230.1
申请日:2019-10-12
Applicant: 北京临近空间飞行器系统工程研究所 , 中国运载火箭技术研究院
IPC: G01M9/06
Abstract: 一种适用于高超声速飞行试验转捩研究的测点布置方法,通过下述方式实现:S1、根据测量需求,确定是测量自然转捩还是强制转捩,若为测量自然转捩,则转S2;若为强制转捩,则转S3;S2、根据测量需求测量主流转捩情况和或横流效应的转捩情况,其中测量主流转捩情况时,测点布置高超声速飞行器主流方向的流线上;测量横流效应的转捩情况时,将测点布置于侧向具有横流速度的位置上;所述的主流方向为飞行器中心流线方向及与其夹角不超过3°的流线方向;S3、在所述飞行器上预先确定的位置设置粗糙元,并将测点布置在粗糙元所在流线的下游;上述测点位置通过安装传感器实现飞行试验过程中飞行器表面物理量的测量。
-
公开(公告)号:CN106872195B
公开(公告)日:2019-04-09
申请号:CN201710010082.1
申请日:2017-01-06
Applicant: 北京临近空间飞行器系统工程研究所 , 中国运载火箭技术研究院
Abstract: 本发明公开了一种高速飞行器气动热飞行试验数据的关联分析方法,包括:基于飞行器第一典型部位和第二典型部位之间热流的三维流线关系,对所述三维流线关系进行解析拟合,得到所述第一典型部位与第二典型部位之间热流的关联简式;根据所述关联简式,对不同典型部位的气动热数据进行关联分析。通过本发明提高了典型部位的气动热数据的利用效率,降低了测试成本,提高了测试效率。
-
公开(公告)号:CN119581937A
公开(公告)日:2025-03-07
申请号:CN202411610652.7
申请日:2024-11-12
Applicant: 北京临近空间飞行器系统工程研究所
Inventor: 解向前 , 张亮 , 高扬 , 杨光 , 周禹 , 陈燕扬 , 迟蓬涛 , 李哲文 , 林朝光 , 袁延荣 , 李瑾 , 谢佳 , 刘逸章 , 姚军 , 王培枭 , 景丽 , 聂亮 , 李萌萌 , 陈敏 , 尘军
IPC: H01R13/635 , H01R13/533 , H01R13/46 , H01R13/40 , H01R13/04
Abstract: 一种抗短时高焓高热冲击的分离插头,相对于传统插头结构提出了限位设计及外防热陶瓷结构,通过推压式弹簧机构在脱插分离瞬间能够将防热绝缘面板推至插头前端面抵抗短时高焓高热流冲击,从而避免插头针部作为驻点而出现熔融,解决了插针熔融后而引起的电路短路问题,同时使外防热陶瓷结构与内部的绝缘层导热系数相当,设置外防热陶瓷结构与内部的绝缘层结构间的空气间隙可以进一步发挥隔热作用。
-
公开(公告)号:CN112287611B
公开(公告)日:2023-05-12
申请号:CN202011026832.2
申请日:2020-09-25
Applicant: 北京临近空间飞行器系统工程研究所
IPC: G06F30/28 , G06F30/15 , G06F111/10 , G06F119/08
Abstract: 本发明提供了一种降低凸起物气动热干扰的局部外形优化方法,包括以下步骤:获得凸起物及附近舱体处的空间流场分布及表面热流分布;针对舱体凸起物处的流动结构开展分析,获得分离涡的大小并提取分离涡的尺寸特征;针对分离涡的尺寸特征在凸起物前方与舱体连接处进行外形优化;对优化后的流场结果和表面热流分布进行分析;若二维简化外形优化结果满足要求,使用真实三维外形验证结果也满足要求,则优化结束;若二维简化外形的优化不满足要求,则重新开始优化。本发明采用局部外形优化的方法对舱体局部高热流区域的热流量进行优化,可以大幅优化局部气动热环境,在根本上解决局部气动加热严酷的问题,减轻材料/结构的防隔热压力。
-
公开(公告)号:CN112935277B
公开(公告)日:2022-04-26
申请号:CN202110110502.X
申请日:2021-01-27
Applicant: 华中科技大学 , 北京临近空间飞行器系统工程研究所
IPC: B22F10/28 , B22F10/85 , B22F10/366 , B33Y10/00 , B33Y50/02
Abstract: 本发明属于先进制造技术领域,并具体公开了一种多级互连微孔金属发汗结构的激光选区熔化成形方法,其首先利用简单的数模布尔运算形成具有一级微孔特征信息的发汗结构打印数模,在激光选区熔化成形过程中,一方面基于一级微孔特征信息直接成形一级微孔;另一方面通过使激光扫描间距大于激光熔覆线宽度,直接在相邻激光熔覆线之间成形二级微孔;同时,通过增大激光束能量输入,直接在激光熔覆线底部形成气孔式三级微孔。本发明所提供的方法,不仅数模预处理运算量小,也无需金属粉末预处理和打印后处理,可高效实现各类复杂金属发汗结构的整体成形,且发汗结构所含微孔的伸展方向多样、互连性强,确保了发汗冷却能力的均匀、稳定。
-
公开(公告)号:CN113184214A
公开(公告)日:2021-07-30
申请号:CN202110448755.8
申请日:2021-04-25
Applicant: 北京临近空间飞行器系统工程研究所
IPC: B64F5/00
Abstract: 本发明涉及降低翼舱体连接处气动加热尾翼局部外形优化方法及结构,所述尾翼的底部并非全部与舱体相连,尾翼前端连接处向后一定距离被切去后,底部呈台阶状,使尾翼前缘底部与飞行器舱体表面之间保持一定间隙,间隙下方为舱体壁面,上方为平整的翼底面,该底面垂直于翼的纵向对称面,平行于飞行器轴向。本发明在保证飞行器气动特性不变的前提下,实现了有效降低舱体‑尾翼前缘连接处热环境的目的。
-
公开(公告)号:CN110626519B
公开(公告)日:2021-06-11
申请号:CN201910791669.X
申请日:2019-08-26
Applicant: 北京临近空间飞行器系统工程研究所 , 中国运载火箭技术研究院
Abstract: 本发明提供了一种降低对流动转捩影响的飞行器表面缺陷尺度控制方法,首先利用理论分析手段或地面试验手段对飞行器开展流动转捩研究,得出满足边界层转捩不受影响的表面缺陷尺度的约束范围;然后针对产生缺陷的部段开展气动加热、结构温度场和变形场联合仿真分析,从结构变形计算结果中提取得到飞行过程中产生缺陷的各部段热变形量数据;最后利用初始缺陷尺度抵消热变形量的策略,根据约束范围和热变形量数据设计初始应加工的缺陷尺度,确保飞行过程中实际缺陷尺度满足约束范围。本发明可以合理且有效的控制飞行器表面缺陷尺度,降低其诱发表面提前转捩的可能,确保飞行器热防护系统可靠工作。
-
公开(公告)号:CN108132112A
公开(公告)日:2018-06-08
申请号:CN201711115268.X
申请日:2017-11-13
Applicant: 北京临近空间飞行器系统工程研究所 , 中国运载火箭技术研究院
Inventor: 李宇 , 陈伟华 , 黄建栋 , 刘国仟 , 聂亮 , 刘宇飞 , 檀妹静 , 景丽 , 高扬 , 聂春生 , 颜维旭 , 陈轩 , 周禹 , 曹占伟 , 王振峰 , 季妮芝 , 高翔宇 , 于明星 , 闵昌万 , 陈敏
Abstract: 本发明提供了一种高超声速飞行器表面热流辨识装置及设计方法,属于高超声速飞行器热参数测量技术领域。该装置包括:热传导敏感元件、敏感元件隔热套、敏感元件压板、温度传感器,热传导敏感元件为柱状结构,敏感元件隔热套为带通孔的柱状结构,热传导敏感元件位于敏感元件隔热套通孔中,与敏感元件隔热套间隙配合,敏感元件一侧与隔热套外表面平齐,形成测量端面,另一侧底部安装有温度传感器,敏感元件压板压住热传导敏感元件,与敏感元件隔热套间隙配合安装,敏感元件隔热套、敏感元件与敏感元件隔热套之间的间隙以及敏感元件压板共同阻隔热传导敏感元件除测量端面以外的部分与外部环境之间热量交换。本发明克服了传统热流传感器对于长时间高热流测量的适应性差以及传感器尺寸大、重量大、安装受限大、难以实现密集测量问题。
-
-
-
-
-
-
-
-
-