改善森吉米尔轧机轧制带钢表面乳化液残留的方法

    公开(公告)号:CN103551390B

    公开(公告)日:2015-08-05

    申请号:CN201310541580.0

    申请日:2013-11-05

    IPC分类号: B21B37/00 B21B45/02

    摘要: 本发明提供了一种改善森吉米尔轧机轧制带钢表面乳化液残留的方法,在轧制带钢前后及轧制带钢过程中的技术参数如下:轧制前,对轧机的擦拭辊进行磨削与安装,设定擦拭辊的粗糙度Ra为0.3-0.6um,擦拭辊的粗擦辊标高比精擦辊标高高3-7mm;轧制过程中,设定空气吹扫的行程位置为带钢宽度减去40-90mm,根据速度和道次设定不同的乳化液流量,合理控制带钢边浪区域在100mm以内,2-5道次温度在50-100℃以内;轧制结束后,在0-30天内,对带钢进行清洗、退火。本发明提供了一种改善森吉米尔轧机轧制带钢表面乳化液残留的方法,能保证产品在清洗、退火后不产生表面黑印、黑斑,能提高产品表面质量。

    一种改善钢带镰刀弯缺陷的方法

    公开(公告)号:CN109877184B

    公开(公告)日:2021-01-08

    申请号:CN201910241525.7

    申请日:2019-03-28

    摘要: 本发明公开了一种改善钢带镰刀弯缺陷的方法,属于热轧钢带深加工技术领域,通过步骤1:当钢带在开平时,使所述钢带的中心位置与开平设备的中心位置之间的偏差满足第一预设条件;步骤2:开平且分条加工结束后,判断所述钢带是否存在镰刀弯缺陷;步骤3:当所述钢带存在镰刀弯缺陷时,获得所述钢带的缺陷位置;步骤4:根据第一调节模式调节所述缺陷位置处第一矫直辊的压下量,和/或,根据第二调节模式调节分布在所述第一矫直辊上方的支撑辊轮与所述钢带之间的相对位置;步骤5:重复上述步骤4,直至所述钢带满足第二预设条件。达到了改善开平钢带残余应力,减小镰刀弯幅度和镰刀弯缺陷程度的技术效果。

    一种电力管件用钢生产方法及电力管件用钢

    公开(公告)号:CN104532127B

    公开(公告)日:2017-01-11

    申请号:CN201410817794.0

    申请日:2014-12-24

    IPC分类号: C22C38/14

    摘要: 本发明涉及炼钢技术领域,公开了一种电力管件用钢生产方法及电力管件用钢,该方法包括:转炉或电炉冶炼工艺、LF钢包精炼炉精炼或RH真空处理工艺、连铸工艺、加热工艺、粗轧工艺、精轧工艺、层流冷却工艺、卷取成卷工艺,其中,控制以下工艺参数:在连铸工艺中,过热度范围为:20~35℃,拉速控制在0.9~1.1m/min范围,凝固末端采用强冷,大量下压;在连铸工艺中,采用二冷制度控制,在二冷制度控制中二冷段采用前强后弱的冷却制度;在加热工艺中,将铸坯在加热炉内加热至1200~1240℃,保温时间大于180分钟;在精轧工艺中,精轧入口温度为950℃~990℃,终轧温度为800~840℃;在卷取成卷工艺中,目标卷取温度为570℃~590℃。

    一种电力管件用钢生产方法及电力管件用钢

    公开(公告)号:CN104532127A

    公开(公告)日:2015-04-22

    申请号:CN201410817794.0

    申请日:2014-12-24

    IPC分类号: C22C38/14

    摘要: 本发明涉及炼钢技术领域,公开了一种电力管件用钢生产方法及电力管件用钢,该方法包括:转炉或电炉冶炼工艺、LF钢包精炼炉精炼或RH真空处理工艺、连铸工艺、加热工艺、粗轧工艺、精轧工艺、层流冷却工艺、卷取成卷工艺,其中,控制以下工艺参数:在连铸工艺中,过热度范围为:20~35℃,拉速控制在0.9~1.1/min范围,凝固末端采用强冷,大量下压;在连铸工艺中,采用二冷制度控制,在二冷制度控制中二冷段采用前强后弱的冷却制度;在加热工艺中,将铸坯在加热炉内加热至1200~1240℃,保温时间大于180分钟;在精轧工艺中,精轧入口温度为950℃~990℃,终轧温度为800~840℃;在卷取成卷工艺中,目标卷取温度为570℃~590℃。

    一种提高压缩机壳体用钢尺寸精度的方法

    公开(公告)号:CN113102498A

    公开(公告)日:2021-07-13

    申请号:CN202110346099.0

    申请日:2021-03-31

    摘要: 本发明提供了一种提高压缩机壳体用钢尺寸精度的方法,所述方法包括,对压缩机壳体用板坯进行加热,获得加热板坯;对所述加热板坯进行粗轧,获得中间坯;对所述中间坯以≤20μm的凸度进行精轧,获得带钢;对所述带钢以580‑650℃的温度进行卷取,获得压缩机壳体用热轧卷;对所述压缩机壳体用热轧卷以≥1.5%的延伸率进行拉伸变形,获得高尺寸精度的压缩机壳体用钢。采用本发明提供的方法,压缩机壳体用热轧卷在宽度方向的厚度极差为0.020mm,极差极小,厚度公差小,尺寸精度高;经过扩径后收缩量为0.01‑0.02mm,收缩量小,尺寸精度高。

    一种屈服强度960MPa汽车大梁钢及其生产方法

    公开(公告)号:CN105543666B

    公开(公告)日:2018-03-06

    申请号:CN201511020842.4

    申请日:2015-12-30

    摘要: 本发明公开一种屈服强度960MPa汽车大梁钢及其生产方法,所述汽车大梁钢的化学成分按重量百分比为:C:0.12%~0.14%;Si:0.15%‑0.35%;Mn:1.2%~1.5%;Nb:0.02%~0.04%;Mo:0.3%~0.5%;V:0.08%~0.15%;Ti:0.01%~0.04%;Al:0.01%~0.06%;Cr:0.4%‑0.6%;B:0.0015%‑0.0025%;P:≤0.02%;S:≤0.01%;N:≤0.008%,其余为Fe及不可避免的杂质。本申请采用了较低的碳、锰含量,充分利用V、Nb、Ti的析出强化效果,同时添加一定量的Mo、Cr、B控制热处理组织状态,得到细小、均匀的回火组织,从而使得材料具有良好的强韧性、良好的焊接性能和良好的低温冲击韧性,提高了车辆的安全性能,且利于车辆的轻量化发展,解决了现有技术中钢材的低温冲击韧性差导致车辆存在安全隐患,强度低导致车辆的轻量化受限的技术问题。

    一种高强度冷成形汽车桥壳钢及其生产方法

    公开(公告)号:CN105039856A

    公开(公告)日:2015-11-11

    申请号:CN201510580000.8

    申请日:2015-09-11

    IPC分类号: C22C38/26 C22C1/02

    摘要: 本发明涉及一种高强度冷成形汽车桥壳钢,其化学成分为:以质量百分比计算,C:0.040~0.065%、Si:0.51~0.75%、Mn:0.80~1.15%、P≤0.02%、S≤0.006%、Al:0.015~0.060%、Nb:0.075~0.090%、Cr:0.55~0.85%,余量为Fe及不可避免的杂质。还涉及一种高强度冷成形汽车桥壳钢的生产方法,包括以下步骤:钢水经过转炉冶炼后获得铸坯;将铸坯放入加热炉进行加热;将加热后的铸坯放入轧机进行轧制,获得热轧板;对热轧板进行冷却;将冷却后的热轧板进行卷取,获得钢板成品。该生产方法保证生产出来的汽车桥壳钢材料强度高,钢卷的通卷性能优良,使获得的钢板成品冷冲压成形开裂率小于1%,由钢板成品制成的桥壳台架试验疲劳周期大于80万次。