-
公开(公告)号:CN105925882A
公开(公告)日:2016-09-07
申请号:CN201610335401.1
申请日:2016-05-19
Applicant: 南京工程学院 , 卓然(靖江)设备制造有限公司
CPC classification number: Y02P10/212 , C22C38/02 , B22D13/02 , C21C7/06 , C22C33/06 , C22C38/005 , C22C38/04 , C22C38/42 , C22C38/44 , C22C38/58
Abstract: 本发明公开了一种离心浇铸炉管及其制备工艺,包括以下步骤:以废钢、锰铁和硅铁、铬铁、纯镍、钼铁和稀土镍钆、镍铈中间合金为原材料,并采用铝丝脱氧并在钢水液面除渣后得到熔融态钢水;根据公式N=20×(G/r)1/2,计算出离心铸造的钢管型腔的离心转速;待型腔转动到所计算的离心转速时,由钢水包向型腔内浇注钢水,浇注过程采用氩气保证钢水不被氧化,浇注温度为1523~1573℃左右,浇注时间为5~10分钟左右;之后脱膜,将离心钢管冷却到室温并通过内镗机械加工方法去除钢管内表层杂质,即得到离心浇铸炉管。本发明不仅制备出高温力学性能良好的离心浇铸炉管,而且其制造过程也避免了杂质元素在炉管晶界偏聚导致的晶界脆化。
-
公开(公告)号:CN105921948A
公开(公告)日:2016-09-07
申请号:CN201610289601.8
申请日:2016-05-04
Applicant: 南京工程学院
IPC: B23P15/00
CPC classification number: B23P15/00
Abstract: 本发明公开了一种大中型复杂结构空心盘形锻件的高效精密成形方法,包括如下步骤:步骤SS1将棒料毛坯使用中频感应加热至1050℃~1250℃,采用自由敦粗与冲孔相复合的工艺进行制坯,终锻温度为950℃~1150℃;步骤SS2 对所述步骤SS1获得的坯料进行径‑轴向辗环精整,工作温度为1050℃~1150℃;步骤SS3 对所述步骤SS2获得的坯料进行表面喷丸处理,中频感应加热至1000℃~1200℃,采用模锻进行净成形,终锻温度为900℃~1150℃;步骤SS4 利用锻造余热对于所述步骤SS3获得的工件进行压平矫正,并通过微量锻、压进行二次加工产生形变强化提高工件力学性能,制得复杂结构空心盘形锻件。本发明可实现自动化连续作业,提高工件成形效率及精度,并显著降低成形过程中的能耗,减少生产成本。
-
公开(公告)号:CN105671431A
公开(公告)日:2016-06-15
申请号:CN201610054743.6
申请日:2016-01-27
Applicant: 南京工程学院
IPC: C22C38/04 , C22C38/02 , C22C38/18 , C22C38/08 , C22C38/16 , C22C38/12 , C21D1/25 , B21K1/24 , B21J5/00
CPC classification number: C22C38/04 , B21J5/00 , B21K1/24 , C21D1/25 , C22C38/005 , C22C38/02 , C22C38/08 , C22C38/12 , C22C38/16 , C22C38/18
Abstract: 本发明公开了一种深海采油设备阀座用钢及其锻件的制造方法,包括以下步骤:以一种专用钢材为坯料,在坯料表面涂覆一层玻璃状涂层,然后再采用自由锻加模具锻的复合锻造方式对坯料进行锻造,得到阀座的二次锻坯;对阀座锻坯进行正火,并采用冰水冷却—空气冷却—沸水冷却—普通水冷四段间歇淬火工艺对阀座锻坯进行淬火热处理;将经过淬火热处理后的阀座锻件加热至675~690℃并保温至少10小时,出炉空冷至室温,即得到深海采油设备阀座用钢锻件。本发明的锻造工艺与热处理工艺的组合有效地防止了形状复杂的大锻件淬火开裂,而且制造的深海采油设备阀座用钢锻件的综合力学性能尤其是低温韧性大幅度提高,能很好地适用于深海低温工况环境。
-
公开(公告)号:CN105541412A
公开(公告)日:2016-05-04
申请号:CN201610053565.5
申请日:2016-01-27
Applicant: 南京工程学院
IPC: C04B41/87
CPC classification number: C04B41/5057 , C04B41/009 , C04B41/87 , C04B2235/9684 , C04B35/52 , C04B41/4531
Abstract: 本发明公开了一种C/C复合材料表面SiC纳米线增韧SiC陶瓷涂层的制备方法,将打磨抛光干燥后的C/C复合材料置于沉积炉中,通电升温至预定温度后,向装有甲基三氯硅烷的鼓泡瓶中通入载气氢气,将反应气源带入炉堂内进行反应,先得到SiC纳米线;再升温至预设温度后,进行SiC涂层的沉积,沉积结束后降温,即可得到SiC涂层;本发明采用一步CVD法原位制备具有三明治结构的致密SiC纳米线增韧SiC涂层,通过SiC纳米线的增韧作用,降低了SiC涂层的开裂趋势,抗氧化能力提升显著,所制备的陶瓷涂层C/C复合材料在1400℃静态空气中氧化420小时失重仅为0.48%,本发明工艺过程简单易实现,解决了现有方法制备的SiC纳米线增韧SiC陶瓷涂层工艺复杂,效果不显著的问题。
-
公开(公告)号:CN105483542A
公开(公告)日:2016-04-13
申请号:CN201610056442.7
申请日:2016-01-27
Applicant: 南京工程学院 , 张家港海锅重型锻件有限公司
IPC: C22C38/08 , C22C38/18 , C22C38/14 , C22C38/12 , C22C38/06 , C22C38/02 , B21J5/00 , C21D1/28 , C21D1/18
Abstract: 本发明公开了一种深海采油装备用钢及其锻件的制造方法,包括以下步骤:以一种专用钢铁材料为坯料,在坯料表面涂覆一层玻璃状涂层,然后采用自由锻加束缚锻的复合锻造方式对坯料进行锻造,得到二次锻坯;然后对二次锻坯进行正火,并采用缓-急-缓梯度升温方式升到1150~1200℃,然后采用水冷-空冷三次循环交替方式进行淬火热处理;对淬火后的二次锻造坯采用回火-水冷-再回火-再水冷的二次回火处理,即得到所述深海采油装备用钢锻件。本发明的锻造工艺与热处理工艺的组合有效地防止了形状复杂的大锻件淬火开裂,而且制造的深海采油装备用钢锻件的综合力学性能尤其是低温韧性大幅度提高,能很好地适用于深海低温工况环境。
-
公开(公告)号:CN105088129A
公开(公告)日:2015-11-25
申请号:CN201510553149.7
申请日:2015-09-01
Applicant: 南京工程学院
Abstract: 本发明公开了一种微纳织构化氮化钛固体润滑膜的制备方法,其特征在于:包括以下步骤:S01,基体的前处理;S02,表面织构化加工:采用超音速微粒轰击设备对基体表面进行织构化加工;S03,氮化层的制备:采用活化屏辅助辉光离子氮化的方法制备氮化钛渗层。本发明提供的一种微纳织构化氮化钛固体润滑膜的制备方法,降低氮化钛薄膜的制备条件,提高其制备效率和质量,实现其与基体的冶金结合,薄膜与基体无明显的结合界面,呈完全冶金结合,结合强度高,并实现其对润滑工况的普适性,满足多种复杂工况下机械设备的润滑和抗磨防护需求。
-
公开(公告)号:CN119351885A
公开(公告)日:2025-01-24
申请号:CN202411450727.X
申请日:2024-10-17
Applicant: 张家港海锅新能源装备股份有限公司 , 南京工程学院
IPC: C22C38/04 , C22C38/06 , C22C38/22 , C22C38/28 , C22C38/20 , C22C38/26 , C22C38/24 , C21D1/18 , C21D1/26 , C21D6/00 , C21D8/00 , C21D9/40 , F03D80/70 , B21H1/06
Abstract: 本发明公开了一种具有高强韧抗氢脆特性的合金钢回转支承锻件及其制造方法,属于金属锻造与热处理技术领域。锻件包括以下各成分及其质量百分比含量:C:0.35~0.40%,Cr:0.8~1.0%,Mo:0.5~0.8%,Mn:0.7~1.0%,Ti:0.1~0.5%,Cu:0.5~0.8%,Nb:0.05~0.1%,V:0.05~0.1%,Al:0.02~0.05%,RE:0.001~0.008%。本发明设计特殊合金钢,通过锻造与热处理工艺,回转支承锻件组织为回火索氏体+细小等轴铁素体+微纳多尺度深氢陷阱碳氮化物,确保合金钢回转支承锻件具有优异强韧性匹配的同时,显著提升其抗氢脆性能。
-
公开(公告)号:CN119227506A
公开(公告)日:2024-12-31
申请号:CN202411172579.X
申请日:2024-08-26
Applicant: 南京工程学院
Abstract: 本发明公开了一种结构陶瓷弯曲强度的智能预测方法及系统,具体涉及材料机械性能评估技术领域,旨在解决现有技术中在评估结构陶瓷力学性能时鲜少关注微结构与力学性能的响应关系等问题,其包括获取待测结构陶瓷的几何信息数据;对待测结构陶瓷的几何信息数据进行处理优化;并将其作为输入,基于预训练的结构陶瓷弯曲强度智能预测模型输出得到待测结构陶瓷的弯曲强度值。本发明构建考虑微孔尺寸、形貌、位置、取向及组合方式的特征空间,通过分区处理并考虑孔洞的临界尺寸与形状,构建并优化具有高精度及优异泛化性的机器学习强度预测模型,进而指导结构陶瓷材料的弯曲强度预测与可靠应用。
-
公开(公告)号:CN118460928B
公开(公告)日:2024-12-10
申请号:CN202410705803.0
申请日:2024-06-03
Applicant: 南京工程学院 , 江苏沙钢钢铁有限公司 , 江苏省沙钢钢铁研究院有限公司
IPC: C22C38/02 , C22C38/04 , C22C38/42 , C22C38/48 , C22C38/50 , C22C38/06 , C21D8/02 , C21D1/18 , B21B1/26
Abstract: 本发明公开了一种高强度级别输氢管线用钢板及其轧制方法和应用,属于金属材料技术领域。钢板以质量百分比计,其化学成分如下,C:0.01%~0.03%,Si:0.10%~0.30%,Mn:0.50%~1.00%,P:0.008%~0.012%,S:0.0010%~0.0020%,Cr:0.20%~0.40%,Ni:0.10~0.30%,Cu:0.15%~0.25%,Nb:0.030%~0.050%,Ti:0.010%~0.020%,Al:0.020%~0.040%,余量为Fe及不可避免杂质。通过优化微合金元素与控轧控冷工艺匹配、精轧后冷却温轧等方法获得较细的铁素体晶粒、较高力学性能和抗氢脆能力。
-
公开(公告)号:CN118621117B
公开(公告)日:2024-12-06
申请号:CN202411103094.5
申请日:2024-08-13
Applicant: 江苏省沙钢钢铁研究院有限公司 , 江苏沙钢钢铁有限公司 , 江苏沙钢集团有限公司 , 南京工程学院
IPC: C21D8/02 , C22C33/04 , C22C38/48 , C22C38/50 , C22C38/02 , C22C38/04 , C22C38/06 , C22C38/00 , B21B1/02 , B21B37/74
Abstract: 本发明揭示了一种低屈强比易焊接高强韧桥梁钢的生产方法。钢的化学成分:C:0.08~0.14%,Si:0.11~0.18%,Mn:1.31~1.47%,Nb:0.011~0.032%,Ti:0.009~0.017%,Al:0.026~0.046%,Cr≤0.13%,Ni≤0.13%。所述方法先把加热后的钢坯以温度T3~T3+40℃轧制到厚度(4~6.8)t;再以温度T4‑50℃~T4+20℃轧制到厚度(1.8~3.2)t;最后以温度T5‑55℃~T5轧制到厚度t;以冷速1~10℃/s空冷至T6‑50℃~T6+20℃,再以冷速5~30℃/s水冷至T7‑30℃~T7+130℃,得到钢板成品。
-
-
-
-
-
-
-
-
-