-
公开(公告)号:CN117352602A
公开(公告)日:2024-01-05
申请号:CN202311191810.5
申请日:2023-09-15
申请人: 南昌大学 , 南昌硅基半导体科技有限公司 , 南昌实验室
摘要: 本发明提供了一种LED芯片键合方法及LED芯片,其中,所述LED芯片键合方法包括:提供发光二极管外延片,所述外延片上顺次形成反射镜层、第一粘结金属层、第一阻挡金属层及第一键合层;提供支撑基板,所述基板上顺次形成第二粘结金属层、第二阻挡金属层及第二键合层;将所述外延片与基板键合在一起,形成第三键合层;其中,第一键合层和第二键合层为高熔点金属层Cu与低熔点金属层In组成的周期性结构,使得键合反应快速而充分地进行;所述低熔点金属层的表面为键合时的贴合面。该方法通过采用Cu‑In固液互扩散键合工艺来键合LED外延片和基板,避免了贵金属Au的使用,从而降低了LED芯片制造成本。
-
公开(公告)号:CN118280818A
公开(公告)日:2024-07-02
申请号:CN202410410912.X
申请日:2024-04-08
申请人: 南昌大学 , 南昌硅基半导体科技有限公司 , 南昌实验室
IPC分类号: H01L21/033 , H01L21/027 , H01L21/3065
摘要: 本申请提供了一种复合掩膜刻蚀Si基GaN图形阵列结构的方法,涉及半导体器件制造领域。该复合掩膜刻蚀Si基GaN图形阵列结构的方法具体包括制备:提供Si基GaN外延片,在Si基GaN外延片上进行光刻,在待刻蚀区域表面形成光刻胶层;在所述光刻胶层和非刻蚀GaN窗口区域的表面制备复合掩膜层,复合掩膜层的层与层之间直接接触,制备过程连续;光刻后留下非刻蚀GaN窗口区域表面的复合掩膜层,利用所述复合掩膜层保护非刻蚀区域,将待刻蚀区域的GaN外延片刻蚀到指定深度获得Si基GaN图形阵列结构。本发明能够解决保持刻蚀深度的同时,控制掩膜厚度尽可能薄,提高掩膜图案精度。在刻蚀多种材料时无需要换用不同掩膜,从而减小刻蚀工艺难度及其复杂性,降低生产成本。
-
公开(公告)号:CN117111420A
公开(公告)日:2023-11-24
申请号:CN202311099718.6
申请日:2023-08-30
申请人: 南昌大学 , 南昌硅基半导体科技有限公司
摘要: 本发明公开了一种用于制备金属凸点的双层正性光刻胶剥离方法:S1,外延片清洗;S2,在外延片上旋涂底层的第一类型正性光刻胶;S3,软烘,对第一类型正性光刻胶进行固化;S4,在第一类型正性光刻胶表面旋涂顶层的第二类型正性光刻胶;S5,软烘,对第二类型正性光刻胶进行固化;S6,曝光,使用光刻机对双层光刻胶进行曝光;S7,后烘焙;S8,显影,使用碱性显影液对双层光刻胶进行显影;S9,金属沉积,使用金属沉积设备沉积金属膜;S10,使用光刻胶剥离液对双层光刻胶进行剥离;S11,在外延片表面制备得到金属凸点。本发明通过双层正性光刻胶实现Lift‑off工艺,解决了Micro‑LED微显示器件中小尺寸金属凸点难以制备的问题,可实现间距小且厚度高的金属凸点制备。
-
公开(公告)号:CN115084333A
公开(公告)日:2022-09-20
申请号:CN202210504290.8
申请日:2022-05-10
申请人: 南昌大学 , 南昌硅基半导体科技有限公司
摘要: 本发明公开了一种倒装式GaN基Micro‑LED显示模组及其制备方法,GaN基Micro‑LED显示模组包括GaN基R/G/B Micro‑LED芯片阵列和电路基板;其中,在电路基板上设有一系列相互垂直但不相交叉的正电极条和负电极条;然后分三次将不同颜色的GaN基Micro‑LED芯片集成到电路基板上,每次集成后去除Micro‑LED芯片的衬底。本发明通过设计特殊的Micro‑LED芯片结构和与其配套的电路基板,有效地解决了采用被动式寻址的Micro‑LED显示器件中金属电极交叉处因钝化困难而造成发光芯片漏电、串色的问题。
-
公开(公告)号:CN112635634A
公开(公告)日:2021-04-09
申请号:CN202011418477.3
申请日:2020-12-07
申请人: 南昌大学 , 南昌硅基半导体科技有限公司
摘要: 本发明公开了一种紫外LED的P型欧姆反射电极结构及其制备方法,所述P型欧姆反射电极结构采用NiOx/Al。制备方法为:先沉积Ni层,厚度为0.1nm‑10nm;在含氧氛围下进行氧化,使镍氧化成NiOx,降低与P‑AlGaInN的接触电阻;再制备Al层,厚度为10 nm‑300 nm。本发明提出的NiOx/Al P型欧姆反射电极,应用于紫外LED,可以同时兼顾高光反射率和低欧姆接触,有助于获得高光效的紫外LED。
-
公开(公告)号:CN111968907A
公开(公告)日:2020-11-20
申请号:CN202010661636.6
申请日:2020-07-10
申请人: 南昌大学 , 南昌硅基半导体科技有限公司
IPC分类号: H01L21/02 , H01L21/3065 , H01J37/32
摘要: 本发明公开了一种氮极性Ⅲ族氮化物粗化方法,方法包括在硅衬底上生长Ⅲ族氮化物叠层,接着在氮化物叠层上制备包括高反射金属的金属叠层,在基板的正反面制备金属叠层,并采用晶圆热压键合方法将所述制备金属叠层的Ⅲ族氮化物叠层与基板键合在一起,之后用湿法腐蚀的方法去除所述硅衬底,露出氮极性Ⅲ族氮化物叠层的缓冲层AlN,从基板的上方对所述的Ⅲ族氮化物叠层表面进行干法刻蚀,采用氧等离子体对干法刻蚀后的表面进行处理,然后对该表面进行湿法粗化。本发明具有先进行表面处理再进行粗化、在不增加外延成本的情况下得到均匀的氮极性Ⅲ族氮化物粗化表面、工艺简单、最终提高产品可靠性的优点。
-
公开(公告)号:CN116207190A
公开(公告)日:2023-06-02
申请号:CN202211619675.5
申请日:2022-12-16
申请人: 南昌大学 , 南昌硅基半导体科技有限公司
摘要: 本发明公开了一种AlN薄膜保护硅衬底Micro‑LED阵列键合转移的方法,所述Micro‑LED阵列表面有一层保护层AlN薄膜,在Micro‑LED阵列与驱动基板键合转移以及去除硅衬底的过程中,保护驱动基板不被破坏。本发明具有如下特点:1、AlN薄膜能起到很好的选择保护的效果;2、作为保护层的AlN薄膜能完全填充Micro‑LED阵列之间的间隙,能最大程度上实现对驱动基板表面的键合金属层及金属焊盘的保护,在干法刻蚀去除硅衬底的过程中可以很好地避免和减少刻蚀产物的附着积累,从而为后续Micro‑LED多次键合转移提供一个比较干净的键合金属表面;3、由于对驱动基板未邦定的区域具有很好的选择保护效果,如果在Micro‑LED阵列上留有足够的间隙,允许进行多次键合,从而能制备双色甚至多色全彩的器件。
-
公开(公告)号:CN113921600A
公开(公告)日:2022-01-11
申请号:CN202111097152.4
申请日:2021-09-18
申请人: 南昌大学 , 南昌硅基半导体科技有限公司
摘要: 本发明公开了一种n型AlGaN上的低阻欧姆电极结构及其制备方法,该n型AlGaN上的低阻欧姆电极结构包括:n型AlGaN层,金属电极层,其特征在于:在所述n型AlGaN层和金属电极层之间设有一个AlN界面层;所述的n型AlGaN层和AlN界面层指向金属电极层的面为氮极性面;n型AlGaN层中的Al组分大于50%;AlN界面层的厚度为50‑150nm。该制备方法通过在高Al组分n型AlGaN层上引入AlN界面层,从而达到较低接触电阻的目的。本发明可有效地解决高Al组分n型AlGaN接触电阻较高的问题。
-
公开(公告)号:CN111968907B
公开(公告)日:2023-05-30
申请号:CN202010661636.6
申请日:2020-07-10
申请人: 南昌大学 , 南昌硅基半导体科技有限公司
IPC分类号: H01L21/02 , H01L21/3065 , H01J37/32
摘要: 本发明公开了一种氮极性Ⅲ族氮化物粗化方法,方法包括在硅衬底上生长Ⅲ族氮化物叠层,接着在氮化物叠层上制备包括高反射金属的金属叠层,在基板的正反面制备金属叠层,并采用晶圆热压键合方法将所述制备金属叠层的Ⅲ族氮化物叠层与基板键合在一起,之后用湿法腐蚀的方法去除所述硅衬底,露出氮极性Ⅲ族氮化物叠层的缓冲层AlN,从基板的上方对所述的Ⅲ族氮化物叠层表面进行干法刻蚀,采用氧等离子体对干法刻蚀后的表面进行处理,然后对该表面进行湿法粗化。本发明具有先进行表面处理再进行粗化、在不增加外延成本的情况下得到均匀的氮极性Ⅲ族氮化物粗化表面、工艺简单、最终提高产品可靠性的优点。
-
公开(公告)号:CN113257973A
公开(公告)日:2021-08-13
申请号:CN202011418472.0
申请日:2020-12-07
申请人: 南昌大学 , 南昌硅基半导体科技有限公司
摘要: 本发明公开了一种具有P面反射电极结构的深紫外LED及其制备方法,所述LED结构包括永久基板、邦定金属层、P面反射电极、P面钝化层、外延层、N面电极和N面钝化层,其中:所述P面反射电极首先在所述P型掺杂层表面制备Ni层,所述Ni层需在氧气氛围下进行快速合金形成欧姆接触;然后在所述Ni层表面依次制备Al层、Ti层、Ag层。所述P面反射电极结构由Ni、Al、Ti、Ag叠层形成,所述Ti层厚度较薄,可以确保腐蚀Ag的同时能腐蚀Ti;Ti层可以有效抑制Al易氧化,同时可以避免Al层和Ag层之间易扩散最终降低芯片光电性能这一问题。本发明提出一种具有P面反射电极结构的深紫外LED,能保证P面反射电极具有抗氧化性能,最终获得高光效深紫外LED。
-
-
-
-
-
-
-
-
-