Abstract:
A laser device for use with a scientific instrument. The laser device includes a laser emitter and a control system. The laser emitter is configured to generate a laser beam for radiating a sample disposed in a vacuum chamber of the scientific instrument. The control system is configured to receive a pressure signal associated with the vacuum chamber from a pressure sensor, and to change a state of the laser beam in response to the pressure reaching a threshold level.
Abstract:
An apparatus includes a substrate transmissive of electromagnetic energy of at least a plurality of wavelengths, having a first end, a second end, a first major face, a second major face, at least one edge, a length, a width, and a thickness, at least a first nanostructure that selectively extracts electromagnetic energy of a first set of wavelengths from the substrate; and an input optic oriented and positioned to provide electromagnetic energy into the substrate via at least one of the first or the second major face of the substrate. Nanostructures can take the form of photonic crystal arrays, a plasmonic structure arrays, or holographic diffraction gratings. The apparatus may be part of a spectrometer.
Abstract:
A method of diagnosing a health problem in a patient by determining the isotope ratio in exhaled human breath using a Raman analyzer is provided. The Raman analyzer for analyzing light emitted from a Raman cell used in the method has a beam splitter configured to split the light emitted from the Raman cell into a first beam and a second beam. An atomic vapor filter can be used to filter a Raman scattered line from the first beam and a chopper system can periodically interrupt the first and second beams that are directed towards a photo detector, which can convert light from the first and second beams into an electrical signal. The signal output from the photo detector can optionally be amplified, digitized, Fourier filtered, and/or subjected to Fourier analysis.
Abstract:
The present invention relates to an apparatus for detecting photons according to an atmospheric condition, using a function of adjusting light quantity that can significantly improve reliability of an atmospheric condition analysis result by minimizing noise in a spectrum by maintaining the quantity of incident light uniform within a predetermined range regardless of atmospheric conditions and changes, and to a method of adjusting light quantity. The apparatus for detecting photons in accordance with atmospheric conditions using a function of adjusting light quantity includes: an apparatus case having a light inlet; a light quantity adjuster disposed under the light inlet and adjusting quantity of incident light such that a predetermined quantity of light travels inside; and a controller controlling operation of the light quantity adjuster in accordance with intensity of light detected by the light quantity adjuster.
Abstract:
A material analytical sensor (1) includes an emitter (3) that irradiates a material (2) with irradiation light (P) including a wavelength region related to estimation of an amount of a component of the material (2), a controller (6) that controls an irradiation cycle (T1) of the irradiation light (P), a receiver (4) that receives reflected light (P') from the material to output as a pulse signal (PS) and receives disturbance light (NP) to output as a noise signal (NS), an integrator (5) that samples N pulse signals during a predetermined period (T3) and integrates the sampled N pulse signals to obtain a first integrated value (SU1), and samples N noise signals during a same period as the predetermined period with a same cycle as the irradiation cycle and integrates the sampled N noise signals to obtain a second integrated value (SU2), and an extractor (6) that deducts the second integrated value (SU2) from the first integrated value (SU!) to extract an amount of the reflected light.
Abstract:
A spectrophotometer includes a photodetection unit configured to convert received light into an electric signal to output the electric signal; a circuit unit including a plurality of gain amplifiers and a plurality of AD converters configured to amplify an output signal from the photodetection unit by a plurality of gains using the plurality of gain amplifiers and configured to convert the amplified output signals into digital signals using the plurality of AD converters to output the digital signals as a plurality of pieces of light amount data; a saturation determination unit configured to determine whether or not each of the plurality of pieces of light amount data from the circuit unit has been saturated; and a measurement result calculation unit configured to calculate, in accordance with a result of the determination by the saturation determination unit, a measurement result of the received light using a part or all of the plurality of pieces of light amount data.
Abstract:
Various embodiments disclosed herein describe a divided-aperture infrared spectral imaging (DAISI) system that is adapted to acquire multiple IR images of a scene with a single-shot (also referred to as a snapshot). The plurality of acquired images having different wavelength compositions that are obtained generally simultaneously. The system includes at least two optical channels that are spatially and spectrally different from one another. Each of the at least two optical channels are configured to transfer IR radiation incident on the optical system towards an optical FPA unit comprising at least two detector arrays disposed in the focal plane of two corresponding focusing lenses. The system further comprises at least one temperature reference source or surface that is used to dynamically calibrate the two detector arrays and compensate for a temperature difference between the two detector arrays.
Abstract:
An optical or infrared spectrometer is suitable for on-line measurements for industrial, agricultural, field, commercial and other applications. Optical spectrometers are very useful for various analytical measurements. On-line operation is needed for obtaining real-time information, which is useful e.g. for process automation and quality control needs. The invention is based on optical design optimized for measuring moving samples at a distance and includes a light guide for signal homogenization, a linear variable filter for defining multiple measurement wavelengths as well as a linear detector array for detecting optical signals relating to the different wavelengths. There is an element for cooling and stabilizing the operating temperature of both the linear detector array and the linear variable filter, while the spectrometer is operating in variable environmental conditions. Thanks to the optical signal chain designed to maximize the radiance at the detector, the proposed spectrometer can provide high signal-to-noise ratio and high speed.
Abstract:
A method of using multivariate optical computing in real-time to collect instantaneous data about a process stream includes installing an optical analysis system proximate a process line, the process line being configured to move a material past a window of the optical analysis system; illuminating a portion of the material with a light from the optical analysis system; directing the light carrying information about the portion through at least one multivariate optical element in the optical analysis system to produce an instantaneous measurement result about the portion; and continuously averaging the instantaneous measurement result over a period of time to determine an overall measurement signal of the material.