Abstract:
The present invention relates to a glow discharge spectroscopy system comprising a glow discharge lamp suitable for receiving a solid sample (10) and forming a glow discharge etching plasma (19). According to the invention, a system (100) for measuring in situ the depth of the erosion crater generated by etching of the sample (10) comprises an optical separator (3), optical means (4) suitable for directing a first incident beam (21) toward a first zone (11) of the sample, which zone is exposed to the etching plasma, and a second incident beam (22) toward a second zone (12) of the same side of the sample, which zone is protected from the etching plasma, respectively, and an optical recombining device (3) suitable for forming an interferometric beam (30) so as to determine the depth (d) of the erosion crater.
Abstract:
A device for sustaining a plasma in a torch is provided. In certain examples, the device comprises a first electrode configured to couple to a power source and constructed and arranged to provide a loop current along a radial plane of the torch. In some examples, the radial plane of the torch is substantially perpendicular to a longitudinal axis of the torch.
Abstract:
The quantitative analysis method for analyzing the composition of materials of the invention is based on a functional relationship (curve Cσ) between line intensity and the concentration of the element in the material. The method comprises: obtaining characteristic parameters, selecting the spectral lines of neutral atoms and ions of the elements of interest, obtaining their atomic data; calculating, for the selected lines, a line crosssection; measuring line intensities; determining the concentrations of the elements of interest by means of fitting two graphs Cσ, one for neutral atoms and another for ions with a unit charge, the fitting being performed by means of an iterative algorithm which compares the experimental graphs with the curves Cσ calculated with a plasma model; calculating, for the data of the graphs Cσ, the product of line optical depth by Lorentzian width; evaluating, for the data of the graphs Cσ, a condition on the validity limit of the model, the datum for which the mentioned product is greater being eliminated if the condition is not complied with; repeating the three preceding steps until all data comply with the mentioned condition. The invention has the advantage of not requiring prior calibrations.
Abstract:
A system (102) for determining properties of a sample (114) comprises a LIBS detector (104,106) and an infra-red absorption detector (108,110) for interrogating a sample (114) to generate LIBS spectral data and infra-red absorption spectral data respectively; and a data processor (112) adapted to apply at least one chemometric prediction model, each constructed to link, preferably quantitatively link, features of both LIBS and absorption spectral data to a different specific property of the sample, to a combined dataset derived from at least portions of both the LIBS and the absorption data to generate therefrom a determination, preferably a quantitative determination, of the specific property linked by that model.
Abstract:
The present invention provides a chip for plasma generation, a plasma generator, and a plasma spectrometry method, having high reproducibility of plasma light emission. The chip for plasma generation of the present invention includes a channel, the channel has a first region, a narrow portion, and a second region, the narrow portion is in communication with the first region and the second region and has a cross-sectional area smaller than the first region and the second region, and the chip further includes an air bubble movement prevention unit the prevents air bubbles generated in the narrow portion from moving from the narrow portion toward the upstream side of the narrow portion. The chip for plasma generation of the present invention has the air bubble movement prevention unit. Therefore, formation of a gas-liquid interface in the narrow portion can be maintained. Thus, reproducibility of plasma light emission can be improved.
Abstract:
The invention concerns a spectroscopic measurement device comprising: - a system (2) for focusing a laser beam (3) on a sample to be analysed (4), - a system for collecting and spectroscopically analysing (17) the light rays emitted by the plasma (15), the system for collecting and analysing (17) comprising, in particular, an optic fibre (18) for collecting light. According to the invention, the device comprises: - a motorised system (23) for moving the optic fibre (18), - an optical imaging system (25) for imaging the plasma, in image form, - and a processing and control unit (24) comprising: • means for analysing the image formed by the optical imaging system in order to select an area of interest, • means for controlling the motorised system (23) in order to position the optic fibre in a position enabling it to collect light coming from the selected area of interest of the plasma.
Abstract:
A prism including a substrate faceted to provide a plurality of flat surfaces, wherein at least two of the plurality of surfaces, each including a filter coating, form at least two filter surfaces, wherein each filter surface selectively permits passage of a predetermined wavelength and reflects remaining wavelengths along an optical path towards another of the plurality of surfaces, optionally another filter surface, wherein an angle of incidence of each of the plurality of surfaces along the optical path is equal or nearly equal. An apparatus incorporating the prism and its use for splitting a light spectrum into a plurality of wavelengths or wavelength ranges.
Abstract:
Intensity of near-ultraviolet light or visible light of 180 to 700 nm emitted from a solid sample, such as an organic semiconductor, irradiated with an electron beam is measured, while kinetic energy (accelerating energy) of the electron beam is changed in a range of 0 to 5 eV so as to obtain a spectrum. Peaks are detected from the spectrum, and the energy thereof is defined as unoccupied-states energy of the sample. The onset energy of the first peak represents electronic affinity energy (electron affinity) of the sample. Since the energy of the electron beam irradiated onto the sample is 5 eV or less, almost no damage is exerted on the sample even when the sample is an organic semiconductor.