Abstract:
Probenträger (100), umfassend eine Folie (10) und ein starres Substrat (30), wobei die Folie das starre Substrat (30) entlang einer Umfangsrichtung umgibt und eingerichtet ist, eine fluidisch dichtende Verbindung in einem Messraum (90) auszubilden.
Abstract:
A hand held spectrometer is used to illuminate the object and measure the one or more spectra. The spectral data of the object can be used to determine one or more attributes of the object. In many embodiments, the spectrometer is coupled to a database of spectral information that can be used to determine the attributes of the object. The spectrometer system may comprise a hand held communication device coupled to a spectrometer, in which the user can input and receive data related to the measured object with the hand held communication device. The embodiments disclosed herein allow many users to share object data with many people, in order to provide many people with actionable intelligence in response to spectral data.
Abstract:
The application relates to a method for determining a property of a fluid component of a fluid present in a compartment of an electrical apparatus by means of a measurement device arranged outside the compartment and comprising a chamber for receiving a quantity of the fluid from the compartment. Amongst other steps of the method, an optical path in the chamber is illuminated by a light source and a first intensity of light is measured by a light detector. Then fluid is released from the compartment into the chamber and a second intensity (Ix) of light is measured. Based on these measurements the property of the fluid component is determined.
Abstract:
A spectrometer is provided. In one implementation, for example, a spectrometer comprises an excitation source, a focusing lens, a movable mirror, and an actuator assembly. The focusing lens is adapted to focus an incident beam from the excitation source. The actuator assembly is adapted to control the movable mirror to move a focused incident beam across a surface of the sample.
Abstract:
A portable spectrometer device includes an illumination source for directing at a sample, and a tapered light pipe (TLP) for capturing light interacting with the sample at a first focal ratio and for delivering the light at a second focal ratio lower than the first focal ratio. A linearly variable filter (LVF) separates the captured light into a spectrum of constituent wavelength signals; and a detector array, including a plurality of pixels, each of the plurality of pixels disposed to receive at least a portion of a plurality of the constituent wavelength signals provides a power reading for each constituent wavelength. Preferably, the TLP is lensed at one end, and recessed in a protective boot with stepped inner walls. The gap between the TLP and LVF is minimized to further enhance resolution and robustness.