Abstract:
A micro electromechanical device comprising a floating element extending between at least two anchors, the floating element comprising a predetermined reference portion, which in at least one predetermined state of the device in use is to be located within a predetermined reference plane, and at least two flexible sections which each extend between the reference portion and one of the anchors, at least two of the flexible sections comprising a stress relieving element which enables deflection of the floating element as a result of a stress gradient, characterised in that the stress relieving elements are provided on predetermined locations between the respective anchor and the reference portion, chosen such that the reference portion is substantially located within the predetermined reference plane in said predetermined state of the device in use.
Abstract:
Un microsystème électromécanique comprend une poutre (1) et une électrode (10) couplée par une interaction électrostatique avec la poutre. La poutre est adaptée pour subir des déformations élastiques par flexion et possède un motif de section sensiblement constant. La poutre (1) est constituée de plusieurs pans (P1-P4) s'étendant sur la longueur de la poutre (L), et ayant chacun une épaisseur inférieure à une dimension extérieure du motif de section (w, t). Une fréquence de vibration par flexion de la poutre est alors accrue par rapport à une poutre pleine de mêmes dimensions extérieures. Un tel microsystème est adapté pour des applications à durées de transition très courtes, ou pour réaliser des oscillateurs et des résonateurs à haute fréquence.
Abstract:
A discrete electro-mechanical device includes a structure 182 having an electrically-conductive trace. A defined patch of nanotube fabric 154 is disposed in spaced relation to the trace; and the defined patch of nanotube fabric 154 is electromechanically deflectable between a first and second state. In the first state, the nanotube article is in contact with the trace. A low resistance signal path is in electrical communication with the defined patch of nanofabric 154. Under certain embodiments, the structure 182 includes a defined gap 180 into which the electrically conductive trace is disposed.
Abstract:
A MEMS device comprises first and second opposing electrode arrangements (22,28), wherein the second electrode arrangement (28) is electrically movable to vary the electrode spacing between facing sides of the first and second electrode arrangements. At least one of the facing sides has a non-flat surface with at least one peak and at least one trough. The height of the peak and depth of the trough is between 0.01t and 0.1t where t is the thickness of the movable electrode.
Abstract:
Electrostatically actuatable MEMS device comprising: a substrate (103) of which at least a top layer (106) comprises a dielectric material; a first conductor (102) fixed to the top layer of the substrate, forming a fixed electrode of the device; and a second conductor (100) fixed to the top layer of the substrate, the second conductor being electrically isolated from the first conductor and comprising a movable portion (100') which is suspended at a predetermined first distance (D1) above the first conductor. The movable portion forms a movable electrode of the device which approaches the fixed electrode upon applying an appropriate voltage difference between the first and second conductors. A substrate surface area (105) is defined as the orthogonal projection of the movable portion on the substrate between the first and second conductors. In the substrate surface area at least one recess (107) is provided in at least the top layer of the substrate.
Abstract:
Electro-mechanical switches and memory cells using vertically-disposed nanofabric articles and methods of making the same are described. An electro-mechanical device, includes a structure having a major horizontal surface and a channel formed therein. A conductive trace is in the channel; and a nanotube article vertically suspended in the channel, in spaced relation to a vertical wall of the channel. The article is electro-mechanically deflectable in a horizontal direction toward the conductive trace. Under certain embodiments, the vertically suspended extent of the nanotube article is defined by a thin film process. Under certain embodiments, the vertically suspended extent of the nanotube article is about 50 nanometers or less. Under certain embodiments, the nanotube article is clamped with a conducting material disposed in porous spaces between some nanotubes of the nanotube article. Under certain embodiments, the nanotube article is formed from a porous nanofabric. Under certain embodiments, the nanotube article is electromechanically deflectable into contact with the conductive trace and the contact is either a volatile state or non-volatile state depending on the device construction. Under certain embodiments, the vertically oriented device is arranged into various forms of three-trace devices. Under certain embodiments, the channel may be used for multiple independent devices, or for devices that share a common electrode.
Abstract:
A discrete electro-mechanical device includes a structure (182) having an electrically-conductive trace. A defined patch of nanotube fabric (154) is disposed in spaced relation to the trace; and the defined patch of nanotube fabric (154) is electromechanically deflectable between a first and second state. In the first state, the nanotube article is in contact with the trace. A low resistance signal path is in electrical communication with the defined patch of nanofabric (154). Under certain embodiments, the structure (182) includes a defined gap (180) into which the electrically conductive trace is disposed.
Abstract:
The invention relates to a semiconductor actuator comprising a substrate base (1), a bending structure (2) which is connected to the substrate base and can be bent at least partially in relation to the substrate base and is provided with semiconductor compounds based on nitrides of main group III elements, and at least two electrical supply contacts (3a, 3b) for impressing an electrical current into the bending structure or for applying an electrical voltage to the bending structure. At least two of the supply contacts are interspaced respectively on the bending structure and/or integrated into the same.
Abstract:
An improved dielectric suitable for use in electronic and micro-electro-mechanical (MEMS) components. The dielectric includes silicon nitride having a percentage of Si:H bonds greater than a percentage of N:H bonds, in order to reduce the level of charge trapping of the silicon nitride.