Abstract:
This invention provides a front-side silicon micromachining process for the fabrication of suspended Porous Silicon membranes in the form of bridges or cantilevers and of thermal sensor devices employing these membranes. The fabrication of the suspended Porous Silicon membranes comprises the following steps: (a) formation of a Porous Silicon layer (2) in, at least one, predefined area of a Silicon substrate (1), (b) definition of etch windows (5) around or inside said Porous Silicon layer (2) using standard photolithography and (c) selective etching of the Silicon substrate (1), underneath the Porous Silicon layer (2), by using dry etching techniques to provide release of the Porous Silicon membrane and to form a cavity (6) under the said Porous Silicon layer. Furthermore, the present invention provides a method for the fabrication of thermal sensors based on Porous Silicon membranes with minimal thermal losses, since the proposed methodology combines the advantages that result from the low thermal conductivity of Porous Silicon and the use of suspended membranes. Moreover, the front-side micromachining process proposed in the present invention simplifies the fabrication process. Various types of thermal sensor devices, such as calorimetric-type gas sensors, conductometric-type gas sensors and thermal conductivity sensors are described utilizing the proposed methodology.
Abstract:
A thermal displacement element comprises a substrate, and a supported member supported on the substrate. The supported member includes first and second displacement portions, a heat separating portion exhibiting a high thermal resistance and a radiation absorbing portion receiving the radiation and converting it into heat. Each of the first and second displacement portions has at least two layers of different materials having different expansion coefficients and stacked on each other. The first displacement portion is mechanically continuous to the substrate without through the heat separating portion. The radiation absorbing portion and the second displacement portion are mechanically continuous to the substrate through the heat separating portion and the first displacement portion. The second displacement portion is thermally connected to the radiation absorbing portion. A radiation detecting device comprises a thermal displacement element and a displacement reading member fixed to the second displacement portion of the thermal displacement element and used for obtaining a predetermined change corresponding to a displacement in the second displacement portion.
Abstract:
A sensor component having a first sensor element and a second sensor element (SE1, SE2) for one sensor function each is proposed, in which a base element (BE), a wall element (WE) in the form of a frame and a cover (DE) together enclose a cavity (CV) of a housing. The first sensor element (SE1) is a MEMS sensor and is mounted inside the cavity on the base element of the housing. The second sensor element (SE2) is in the form of an ASIC with an active sensor surface (SA) and is mounted on or under the cover or is embedded in the cover. Electrical external contacts (AK) for the first and second sensor elements are provided on an external surface of the housing. The cavity has at least one opening (OE) or bushing (DF).
Abstract:
An apparatus and method wherein the method comprises: a deformable substrate; a curved support structure configured to support at least a portion of a resistive sensor wherein the resistive sensor comprises a first electrode, a second electrode and a resistive sensor material provided between the electrodes; at least one support configured to space the curved support structure from the deformable substrate so that when the deformable substrate is deformed the curved support structure is not deformed in the same way; wherein the resistive sensor is positioned on the curved support structure so as to limit deformation of the resistive sensor when the deformable substrate is deformed.
Abstract:
An infrared sensor comprises a vacuum cavity (28) with a temperature sensor (4) located therein. An infrared filter plate (19) is located at a distance from and above the temperature sensor (4) by means of a spacer (20). The filter plate forms the top wall of the vacuum cavity (28). An additional seal layer (29) can be provided for sealing spacer (20) if spacer (20) not gas-tight. This design dispenses with a separate cap between the vacuum cavity (28) and the filter plate (19), which allows to manufacture the device more easily.
Abstract:
The invention relates to a sensor, especially for location-independent detection. Said sensor comprises a substrate (1), at least one microstructured sensor element (52) having an electrical property that varies with temperature, and at least one membrane (36.1) above a cavern (26, 74, 94), the sensor element (52) being arranged on the lower face of the at least one membrane (36.1), and the sensor element (52) being connected via leads (60, 62; 98-1, 98-2, 100-1, 100-2) which extend in, on or below the membrane (36.1). According to the invention, especially a plurality of sensor elements (52) can be configured as diode pixels in a monocrystalline layer that is formed by epitaxial growth. In the membrane (36.1), suspension springs (70) can be configured that receive the individual sensor elements (52) in an elastic and insulating manner.
Abstract:
A microsystem component with a device (3) deformable under the influence of temperature changes is disclosed. The device comprises at least one first (4, 5) and second (8) element with differing thermal expansion coefficients and different thermal conductivities. The elements (4, 5; 8) are physically separate and arranged and connected to each other such that the device (3) assumes flexure states which are dependent on the temperature.
Abstract:
The invention relates to a method for making a MEMS device having connectors for interconnecting components in the MEMS device. The method comprises applying a sacrificial material layer on a first substrate wafer, the thickness of the sacrificial layer essentially defining the length of the connectors. Connectors made of electrically conducting and/ or mechanically rigid material are provided and embedded in the sacrificial material layer. Components are provided on top of the sacrificial layer by 3D integration with wafer bonding, to connect the components to the connectors. It also relates to a MEMS device made by 3D integration with wafer bonding comprising first and a second components interconnected by connectors having a length of > 4μm. The components can comprise integrated circuits.