Abstract:
L'invention est relative à un procédé de fabrication d'un dispositif électromécanique comprenant un élément actif, caractérisé en ce qu'il comporte : a) la réalisation d'une première couche d'arrêt monocristalline (2) sur une couche monocristalline (1') d'un premier substrat (1), b) l'épitaxie sur ladite première couche d'arrêt (2), d'une couche mécanique monocristalline (3) en au moins un matériau différent de celui de la couche d'arrêt (2), c) la réalisation sur ladite couche active (3), d'une couche sacrificielle (4), d) la réalisation d'une couche d'adhésion (50) sur la couche sacrificielle (4), e) le collage d'un deuxième substrat (6) sur la couche d'adhésion (50) f) l'élimination du premier substrat (1) et de la couche d'arrêt (2) pour mettre à nu la surface (3 1 ) de la couche mécanique (3) opposée à la couche sacrificielle (4), l'élément actif étant réalisé par au moins une partie de la couche mécanique (3).
Abstract:
Micro-electromechanical systems (MEMS) pre-fabrication products and methods for forming MEMS devices using silicon-on-metal (SOM) wafers. An embodiment of a method may include the steps of bonding a patterned SOM wafer to a cover wafer (46), thinning the handle layer of the SOM wafer (48), selectively removing the exposed metal layer (50), and either continuing with final metallization (64) or cover bonding to the back of the active layer (62).
Abstract:
A non-volatile memory device and method of manufacturing a non-volatile micro-electromechanical memory cell. The method comprises the first step of depositing a first layer of sacrificial material on a substrate by use of Atomic Layer Deposition The second step of the method is providing a cantilever (101) over at least a portion of the first layer of sacrificial material. The third step is depositing, by use of Atomic Layer Deposition, a second layer of sacrificial material over the first layer of sacrificial material and over a portion of the cantilever such that a portion of the cantilever is surrounded by sacrificial material. The fourth step is providing a further layer material (107) which covers at least a portion of the second layer of sacrificial material. Finally, the last step is etching away the sacrificial material surrounding the cantilever, thereby defining a cavity (102) in which the cantilever is suspended.
Abstract:
A microelectromechanical systems device having support structures formed of sacrificial material surrounded by a protective material. The microelectromechanical systems device includes a substrate having an electrode formed thereon. Another electrode is separated from the first electrode by a cavity and forms a movable layer, which is supported by support structures formed of a sacrificial material.
Abstract:
Die Erfindung betrifft Mikro-Elektromechanische Elemente, die vielfältig mit geringfügigen Modifikationen in der Mikromechanik, -optik und auch -fluidik eingesetzt werden können. Sie sollen kostengünstig hergestellt werden können und für verschiedene Applikationen anpassbar sein. Die erfindungsgemäßen Elemente sind dabei so ausgebildet, dass auf einem Substrat eine elastisch verformbare Membran aus einem zumindest bereichsweise elektrisch leitenden Werkstoff so befestigt ist, dass zwischen Substrat und Membran ein Hohlraum oder ein Spaltbereich mittels Abstandshaltern ausgebildet ist. Ein oder mehrere Abstandshalter sind aus einem dielektrischen polymeren Werkstoff gebildet. Am Substrat ist mindestens ein Kontaktelement vorhanden, das an eine elektrische Spannungsquelle angeschlossen ist.
Abstract:
The fabrication of a MEMS device such as an interferometric modulator is improved by employing an etch stop layer (44) between a sacrificial layer (46) and a mirror layer (38). The etch stop may reduce undesirable over-etching of the sacrificial layer and the mirror layer. The etch stop layer may also serve as a barrier layer, buffer layer, and/or template layer.
Abstract:
The current invention provides for encapsulated release structures, intermediates thereof and methods for their fabrication. The multi-layer structure has a capping layer (211) that preferably comprises silicon oxide and/or silicon nitride and which is formed over an etch resistant substrate (203). A patterned device layer (206), preferably comprising silicon nitride, is embedded in a sacrificial material (205, 209), preferably comprising polysilicon, and is disposed between the etch resistant substrate (203) and the capping layer (211). Access trenches or holes (219) are formed into the capping layer (211) and the sacrificial material (205, 209) is selectively etched through the access trenches (219) such that portions of the device layer (206) are released from the sacrificial material (205, 209). The etchant preferably comprises a noble gas fluoride NgF2x (wherein Ng = Xe, Kr or Ar: and where x = 1, 2 or 3). After etching that sacrificial material (205, 209), the access trenches (219) are sealed to encapsulate (241) released portions the device layer (206) between the etch resistant substrate (203) and the capping layer (211). The current invention is particularly useful for fabricating MEMs devices, multiple cavity devices and devices with multiple release features.
Abstract:
The invention provides a general fabrication method for producing MicroElectroMechanical Systems (MEMS) and related devices using Silicon-On-Insulator (SOI). One first obtains an SOI wafer that has (i) a handle layer, (ii) a dielectric layer, and (iii) a device layer. A mesa etch has been made on the device layer of the SOI wafer and a structural etch has been made on the dielectric layer of the SOI wafer. One then obtains a substrate (such as glass or silicon), where a pattern has been etched onto the substrate. The SOI wafer and the substrate are bonded together. Then the handle layer of the SOI wafer is removed, followed by the dielectric layer of the SOI wafer.
Abstract:
The present invention relates to a fabrication process for manufacture of micro electromechanical (MEM) devices such as cantilever support beams. This fabrication process requires only two lithographic masking steps and offers moveable electromechanical devices with high electrical isolation. A preferred embodiment of the process uses electrically insulating glass substrate (102) as the carrier substrate and single crystal silicon (108) as the MEM component material. The process further includes deposition of an optional layer of insulating material (110) such as silicon dioxide on top of a layer of doped silicon (108) grown on a silicon substrate. The silicon dioxide (110) is epoxy bonded to the glass substrate (102) to create a silicon-silicon dioxide-epoxy-glass structure (200). The silicon is patterned using anisotropic plasma dry etching techniques. A second patterning then follows to pattern the silicon dioxide layer (110) and an oxygen plasma etch is performed to undercut the epoxy film (120) and to release the silicon MEM component. This two-mask process provides single crystal silicon MEMs with electrically isolated MEM component. Retaining silicon dioxide insulating material (110) in selected areas mechanically supports the MEM component.
Abstract:
A method of forming a membrane with nanometer scale pores includes forming a sacrificial etch stop layer on a substrate. A base layer is constructed on the sacrificial etch stop layer. Micrometer scale pores are formed within the base layer. A sacrificial base layer is built on the base layer. The sacrificial base layer is removed from selected regions of the base layer to define nanometer scale pores within the base layer. The resultant membrane has sub-fifty nanometer pores formed within it.