Abstract:
It is an object of the present invention to provide a laser-welded article that workpieces prepared simply can be easily unified by laser in one laser welding process without using complicated processes. Moreover, the laser-welded article has an excellent appearance and sufficient welding strength of the molded workpieces, and does not damage the resin property. The laser-welded article comprises: an integral construction of a single workpiece that at least a part of curled workpiece is overlapped or plural workpieces that at least a part of each workpiece is piled, which is welded by exothermic through irradiating laser, wherein the single laser-transmissible-absorptive molded workpiece or the plural laser-transmissible-absorptive molded workpieces include a thermoplastic resin and a laser-transmissible absorbent to have an absorbance: a ranging from 0.07 to 2.0, and have abilities of absorbing at least partial beam of the laser and transmitting another partial beam of the laser.
Title translation:VERFAHREN SOWIE VORRICHTUNG ZUR HERSTELLUNG EINES FASERVERBUNDWERKSTOFFES IN MINDESTENS EINES MIT EINEM POLYMERIMPRÄGNIERTENBREIT-FASERBANDES
Abstract:
A connection system comprising a first pipe (1) and a second pipe (2) connected transversely thereto, wherein both pipes (1, 2) comprise an amorphous thermoplastic, wherein the first pipe (1) and the second pipe (2) are welded together to form a joint, wherein at least some of the molecular chains of the plastic in the first pipe (1) on the one hand and at least some of the molecular chains of the plastic in the second pipe (2) on the other hand extend at least substantially in the same direction at the location of the joint.
Abstract:
A dielectric weldable material includes a blend of at least two components including an inert polymer and an elastomeric polar polymer. A method of forming a bond includes providing a substrate having a first end and a second end, wherein the substrate includes a blend of at least two components including an inert polymer and an elastomeric polar polymer. The method further includes bonding the first end and second end of the substrate with high frequency electromagnetic energy.
Abstract:
Composite components are joined together by an amorphous thermoplastic film forming a fused thermoplastic joint between the components. Fusion of the film may be achieved at relatively low temperatures that are sufficient to cure thermoset composite components, but are below the melting point of semi-crystalline thermoplastic components.
Abstract:
With respect to fiber-reinforced plastics in which a base member is at least partially reinforced with a continuous fiber-reinforced resin member, there is provided a fiber-reinforced plastic in which the continuous fibers forming the continuous fiber-reinforced resin member do not bend, and, further, the base member and the continuous fiber-reinforced resin member are made to favorably adhere to each other, as well as a method of producing same. Provided is a fiber-reinforced plastic in which at least a portion of the base member is laminated with, as a reinforcement member, the continuous fiber-reinforced resin member. An adhesion layer comprising a thermoplastic resin is present between the base member and the reinforcement member, the adhesion layer making the two adhere to each other. With respect to the thermoplastic resin of the reinforcement member, assuming Tg1 denotes its glass transition point if it is an amorphous plastic, or Tm1 its melting point if it is a crystalline plastic, and with respect to the thermoplastic resin of the adhesion layer, assuming Tg2 denotes its glass transition point if it is an amorphous plastic, or Tm2 its melting point if it is a crystalline plastic, then Tg1 > Tg2 or Tm2, or Tm1 > Tg2 or Tm2.
Abstract:
The invention relates to the use of thermoplastic molding compounds, comprising as substantial components: A) 29 to 99.95 wt % of a polyesters, B) 0.05 to 2.0 wt % of Na2CO3, K2CO3, NaHCO3, KHCO3 or mixtures thereof, relative to 100 wt % of A) and B), and additionally, C) 0 to 70 wt % of further additives, where the sum of the wt % of A) to C) is 100 %, for producing laser-transparent molded parts of any kind.
Abstract:
Quinophthalone compound of Formula (1) or (2), mixed colorant, laser ray transmitting colored resin composition containing thereof, and laser-welded product. in each of Formulas (1) and (2), X : -O-L; L : hydrogen atom, alkyl, aryl; Y represents hydrogen atom, hydroxyl, mercapto, alkoxy, aryloxy, heterocyclic oxy, acyloxy, alkylsulfonyloxy, arylsulfonyloxy, alkoxycarbonyloxy, aryloxycarbonyloxy, alkylthio, arylthio, heterocyclic thio; R1 to R8 and R1 to R4 and R9 to R14: hydrogen atom, nitro, hydroxyl, mercapto, carboxyl, cyano, thiocyano, halogen atom, alkyl, cycloalkyl, aryl, amino, acyl, alkoxy, aryloxy, heterocyclic oxy, acyloxy, alkylsulfonyloxy, arylsulfonyloxy, alkoxycarbonyloxy, aryloxycarbonyloxy, alkoxycarbonyl, cycloalkyloxycarbonyl, aryloxycarbonyl, heterocyclic oxycarbonyl, carbamoyl, sulfamoyl, alkylsulfonyl, arylsulfonyl, alkylthio, arylthio, heterocyclic thio, alkoxysulfonyl, cycloalkyloxysulfonyl, aryloxysulfonyl, heterocyclic oxysulfonyl; at least one of R5 to R8 in Formula (1) is carboxyl, at least one of R9 to R14 in Formula (2) is carboxyl.
Abstract:
Provided are a method of bonding resin materials for bonding a resin material (X) containing an oxymethylene-based polymer (A) and a resin material (Y), and a structure obtained by the bonding method. The method includes preparing as the resin material (Y) a low-melting-point oxymethylene-based polymer (B) having a melting point lower than that of the oxymethylene-based polymer (A) by 5 to 50°C, or preparing as the resin material (Y) the resin material (X) or another resin material, and providing the low-melting-point oxymethylene-based polymer (B) between the resin material (Y) and the resin material (X) and heating resin materials.