Abstract:
It is an object of the present invention to provide a laser-welded article that workpieces prepared simply can be easily unified by laser in one laser welding process without using complicated processes. Moreover, the laser-welded article has an excellent appearance and sufficient welding strength of the molded workpieces, and does not damage the resin property. The laser-welded article comprises: an integral construction of a single workpiece that at least a part of curled workpiece is overlapped or plural workpieces that at least a part of each workpiece is piled, which is welded by exothermic through irradiating laser, wherein the single laser-transmissible-absorptive molded workpiece or the plural laser-transmissible-absorptive molded workpieces include a thermoplastic resin and a laser-transmissible absorbent to have an absorbance: a ranging from 0.07 to 2.0, and have abilities of absorbing at least partial beam of the laser and transmitting another partial beam of the laser.
Abstract:
With respect to fiber-reinforced plastics in which a base member is at least partially reinforced with a continuous fiber-reinforced resin member, there is provided a fiber-reinforced plastic in which the continuous fibers forming the continuous fiber-reinforced resin member do not bend, and, further, the base member and the continuous fiber-reinforced resin member are made to favorably adhere to each other, as well as a method of producing same. Provided is a fiber-reinforced plastic in which at least a portion of the base member is laminated with, as a reinforcement member, the continuous fiber-reinforced resin member. An adhesion layer comprising a thermoplastic resin is present between the base member and the reinforcement member, the adhesion layer making the two adhere to each other. With respect to the thermoplastic resin of the reinforcement member, assuming Tg1 denotes its glass transition point if it is an amorphous plastic, or Tm1 its melting point if it is a crystalline plastic, and with respect to the thermoplastic resin of the adhesion layer, assuming Tg2 denotes its glass transition point if it is an amorphous plastic, or Tm2 its melting point if it is a crystalline plastic, then Tg1 > Tg2 or Tm2, or Tm1 > Tg2 or Tm2.
Abstract:
A coated fabric (11, 11') comprises a fabric from monoaxially drawn polymer tapes (12a, 12b), especially polyolefin or polyester tapes, preferably polypropylene or polyethylene terephthalate tapes. The fabric (12) is coated with a sealing layer (13), produced of a thermoplastic synthetic the melting point of which lies below the crystallite melting point of the fabric tape material. The coated fabric (11, 11') is especially suitable for hot air, ultrasonic, heated tool, infrared or laser beam welding techniques.
Abstract:
Provided are a method of bonding resin materials for bonding a resin material (X) containing an oxymethylene-based polymer (A) and a resin material (Y), and a structure obtained by the bonding method. The method includes preparing as the resin material (Y) a low-melting-point oxymethylene-based polymer (B) having a melting point lower than that of the oxymethylene-based polymer (A) by 5 to 50°C, or preparing as the resin material (Y) the resin material (X) or another resin material, and providing the low-melting-point oxymethylene-based polymer (B) between the resin material (Y) and the resin material (X) and heating resin materials.
Abstract:
The invention relates to a packaging, preferably for foodstuffs, said packag ing comprising a container and a lid, both of which is made of a material which is suitable for injection moulding, said lid being sealable relative to the container; and wherein the lid comprises an elevated portion for abutment on the internal, upper edge of the container, wherein at least a portion of the lid (2) is made with a sealing zone (7, 8) for joining with the container (1 ), said sealing zone (7, 8) being added with an active material which, by influence during joining, changes the material in the sealing zone (7, 8) to the effect that the sealing becomes weaker than the surrounding material, whereby the sealing is, upon opening, broken in the joint and not in the surrounding material. The invention also relates to a method of sealing the above packaging, wherein a material is added which, during the sealing procedure, changes the material in the joint to the effect that the seal becomes weaker than the surrounding material, whereby, when opened, the seal is broken in the joint and not in the surrounding material.
Abstract:
To provide a material for laser welding, which is excellent in laser transmittance, as well as low warpage and enables a shaped article to be obtained with high weld strength and uniform weld strength by laser welding. This material for laser welding comprises a thermoplastic resin composition containing (A) a thermoplastic resin and (B) a glass fiber having a non-circular cross-section with the ratio between the long diameter and the short diameter in the cross-section at right angles to the length direction being from 1.2 to 10.
Abstract:
There is provided a thin-walled self-sealing vascular graft with a first tubular structure formed from ePTFE and having a wall thickness of 0.2mm or less, and a resealable polymer layer, such as a styrene copolymer, located on one surface of said first tubular structure. A second tubular structure may also be present, so that the resealable polymer layer is disposed between said first and second tubular structure. The second tubular structure is preferably formed from a textile layer but can also be ePTFE. A method of forming such a self-sealing graft is also provided comprising the steps of wrapping unsintered ePTFE tape helically onto a mandrel such that adjacent turns of the ePTFE tape overlap; sintering the layers of tape by heating above the crystalline melting point of ePTFE to form a sintered tubular structure, and applying a resealable polymer layer to one surface of said first tubular structure. The graft can be used for replacing a defective portion of the vasculature in a patient in need thereof.
Abstract:
The laser-transmissive welding label of the present invention is a resin label which comprises at least a resin layer and is affixable to a resin shaped article by a laser welding, wherein the resin layer has a light-scattering property, and the transmittance of the resin layer relative to a laser beam having an oscillation wavelength within the range of 740 to 1100 nm is not less than 20%, and the total light transmittance of the resin layer relative to a visible light (in accordance with ASTM D1003) is not more than 50%. The resin layer may comprise a thermoplastic resin which may have a compatibility with a resin for the resin shaped article. The label may be able to mask the resin shaped article, or may be colored with a coloring agent. A shaped composite article (e.g., a toner cartridge) may be formed by bonding the label to the resin shaped article with use of the laser welding. The present invention provides the resin label which is affixable to the resin shaped article in an easy and simple way, without an adhesive.