Abstract:
One example discloses a chip, comprising: a substrate (102, 202, 302, 602, 802); a first side of a passivation layer (206, 604, 804) coupled to the substrate (102, 202, 302, 602, 802); a device, having a device height and a cavity, wherein a first device surface is coupled to a second side of the passivation layer (206, 604, 804) which is opposite to the first side of the passivation layer (206, 604, 804); and a set of structures (108, 110, 214, 306, 410, 502, 504, 612, 614, 702, 812) coupled to the second side of the passivation layer (206, 604, 804) and configured to have a structure height greater than or equal to the device height.
Abstract:
The present invention generally relates to a MEMS device and a method of manufacture thereof. The RF electrode, and hence, the dielectric layer thereover, has a curved upper surface that substantially matches the contact area of the bottom surface of the movable plate. As such, the movable plate is able to have good contact with the dielectric layer and thus, good capacitance is achieved.
Abstract:
A method of shaping a substrate in one embodiment includes providing a first support layer, providing a first shaping pattern on the first support layer, providing a substrate on the first shaping pattern, performing a first chemical mechanical polishing (CMP) process on the substrate positioned on the first shaping pattern, and removing the once polished substrate from the first shaping pattern.
Abstract:
A process for filling one or more etched holes defined in a frontside surface of a wafer substrate. The process includes the steps of: (i) depositing a layer of a thermoplastic first polymer onto the frontside surface and into each hole; (ii) reflowing the first polymer; (iii) exposing the wafer substrate to a controlled oxidative plasma; (iv) optionally repeating steps (i) to (iii); (v) depositing a layer of a photoimageable second polymer; (vi) selectively removing the second polymer from regions outside a periphery of the holes using exposure and development; and (vii) planarizing the frontside surface to provide holes filled with a plug comprising the first and second polymers, which are different than each other. Each plug has a respective upper surface coplanar with the frontside surface.
Abstract:
The present invention generally relates to a MEMS device and a method of manufacture thereof. The RF electrode, and hence, the dielectric layer thereover, has a curved upper surface that substantially matches the contact area of the bottom surface of the movable plate. As such, the movable plate is able to have good contact with the dielectric layer and thus, good capacitance is achieved.
Abstract:
The invention relates to a microfluidic device comprising: a substrate provided with a fluid channel; a plurality of electro osmotic flow drive sections for providing electro osmotic flow in the channel, each drive section comprising electric field electrodes, exposed to the channel, and one or more gate electrodes, separated from the channel by an insulating layer, and control means connected to said electrodes of each drive section so as to control the direction of the electro osmotic flow in the channel.
Abstract:
A semiconductor accelerometer is formed by attaching a semiconductor layer to a handle wafer by a thick oxide layer. Accelerometer geometry is patterned in the semiconductor layer, which is then used as a mask to etch out a cavity in the underlying thick oxide. The mask may include one or more apertures, so that a mass region will have corresponding apertures to the underlying oxide layer. The structure resulting from an oxide etch has the intended accelerometer geometry of a large volume mass region supported in cantilever fashion by a plurality of piezo-resistive arm regions to a surrounding, supporting portion of the semiconductor layer. Directly beneath this accelerometer geometry is a flex-accommodating cavity realized by the removal of the underlying oxide layer. The semiconductor layer remains attached to the handle wafer by means of the thick oxide layer that surrounds the accelerometer geometry, and which was adequately masked by the surrounding portion of the top semiconductor layer during the oxide etch step. In a second embodiment support arm regions are dimensioned separately from the mass region, using a plurality of buried oxide regions as semiconductor etch stops.
Abstract:
The present invention generally relates to the formation of a micro-electromechanical system (MEMS) cantilever switch in a complementary metal oxide semiconductor (CMOS) back end of the line (BEOL) process. The cantilever switch is formed in electrical communication with a lower electrode in the structure. The lower electrode may be either blanket deposited and patterned or simply deposited in vias or trenches of the underlying structure. The excess material used for the lower electrode is then planarized by chemical mechanical polishing or planarization (CMP). The cantilever switch is then formed over the planarized lower electrode.
Abstract:
A method of manufacturing a semiconductor device includes: a bonding step of bonding a first substrate with optical transparency and a second substrate having a surface on which a functional element is provided to each other such that the functional element faces the first substrate; a thinning step of thinning at least one of the first and second substrates; and a through-hole forming step of forming a cavity and a through-hole communicated with the cavity in at least part of a bonding portion between the first and second substrates. According to the present invention, it is possible to prevent irregularities or cracks caused by the presence or absence of the cavity and more regularly thin the substrate. In addition, it is possible to manufacture a semiconductor device capable of contributing to the miniaturization of devices and electronic equipment having the devices, using a more convenient process.