Abstract:
This invention relates to a novel approach for the generation of human induced neural border stem cells (iNBSCs) by the direct conversion of somatic cells (peripheral blood, skin biopsies) and to novel uses of such cells, including the differentiation of these stem cells into cell types of the CNS and the neural crest lineages, and the uses of such cells.
Abstract:
The invention relates to a method for reprogramming cells from aged donors or senescent cells to pluripotent cells that have lost marks of senescence. In particular, the invention relates to an ex vivo method for preparing induced pluripotent stein cells (iPSCs) from a target cell population comprising cells from aged donors or senescent cells, said method comprising the steps of culturing said target cell population tinder appropriate conditions for reprogramming said cells into iPSCs, wherein said appropriate conditions comprises increasing expression in said target cells, of at least the following reprogramming factors: Oct4, Klf4, Sox2, Myc, Lin28 and, optionally Nanog.
Abstract:
Cocktails of chemical inducers of neuron-like properties (CINP) is provided, which includes cAMP agonists, neurogenic small molecules, glycogen synthase kinase inhibitors, TGFβ receptor inhibitors, and BET family bromodomain inhibitors and optionally, a selective inhibitor of ROCK or p38 MAPK. These cocktails are used in a method of inducing neuron-like properties in partially or completely differentiated non-neuronal cells. The method includes contacting cells of a first type (non-neuronal) with the CINPs for a sufficient period of time to result in reprogramming the cell into cells of a second type having neuron-like characteristics (CiNs). Isolated chemically induced neurons (CiNs) can be used in a number of applications, including but not limited to cell therapy.
Abstract:
Provided are engineered meat products formed as a plurality of at least partially fused layers, wherein each layer comprises at least partially fused multicellular bodies comprising non-human myocytes and wherein the engineered meat is comestible. Also provided are multicellular bodies comprising a plurality of non-human myocytes that are adhered and/or cohered to one another; wherein the multicellular bodies are arranged adjacently on a nutrient-permeable support substrate and maintained in culture to allow the multicellular bodies to at least partially fuse to form a substantially planar layer for use in formation of engineered meat. Further described herein are methods of forming engineered meat utilizing said layers.
Abstract:
Provided are a synthetic peptide that induces the reprogramming of a differentiated cell, a reprogramming-inducing pharmaceutical composition that contains this synthetic peptide, and a method for producing an undifferentiated cell from a differentiated cell using this synthetic peptide. The peptide provided by the present invention is a synthetic peptide having a reprogramming-inducing peptide sequence formed of the amino acid sequence given by SEQ ID NO: 1 or a modified amino acid sequence thereof. The method for producing an undifferentiated cell provided by the present invention includes inducing the reprogramming of a target cell by culturing a cell culture which contains the target cell and to which the synthetic peptide has been supplied.
Abstract:
The present invention relates to a composition for inducing direct transdifferentiation into oligodendrocyte progenitor cells (OPCs) from somatic cells, the composition containing at least one protein selected from the group consisting of direct transdifferentiation factors OCT4, SOX1, SOX2, SOX10, OLIG2, NKX2.2, and NKX6.2, a nucleic acid molecule coding the protein, or a vector including the nucleic acid molecule introduced thereinto; a pharmaceutical composition for preventing or treating spinal cord injuries or demyelination diseases; a cell therapy agent for preventing or treating spinal cord injuries or demyelination diseases; a cell therapy agent for treating spinal cord injuries or demyelination diseases; a composition for screening drugs for the treatment of spinal cord injuries or demyelination diseases; a 3D printing biomaterial composition for manufacturing artificial tissues for the treatment of spinal cord injuries or demyelination diseases; and a method for direct transdifferentiation into oligodendrocyte progenitor cells from somatic cells. According to the present invention, the oligodendrocyte progenitor cells are prepared from somatic cells through direct transdifferentiation, and thus can be favorably utilized for the treatment of spinal cord injuries and demyelination diseases.
Abstract:
A method for producing pancreatic endocrine cells, the method including introducing one or more genes of a GLIS family or one or more gene products thereof and a Neurogenin3 gene or one or more gene products thereof into somatic cells.
Abstract:
The present disclosure provides methods of generating neural stem cells from differentiated somatic cells. The present disclosure also provides induced neural stem cells generated using a subject method, as well as differentiated cells generated from a subject induced neural stem cell. A subject neural stem cell, as well as differentiated cells derived from a subject neural stem cell, is useful in various applications, which are also provided in the present disclosure.
Abstract:
A method for inducing reprogramming of a cell of a first type which is not a non-hepatocyte (non-hepatocyte cell), into a cell with functional hepatic drug metabolizing and transporting capabilities, is disclosed. The non-hepatocyte is induced to express or overexpress hepatic fate conversion and maturation factors, cultured in somatic cell culture medium, hepatocyte cell culture medium and hepatocyte maturation medium for a sufficient period of time to convert the non-hepatocyte cell into a cell with hepatocyte-like properties. The iHeps induced according to the methods disclosed herein are functional induced hepatocytes (iHeps) in that they express I and II drug-metabolizing enzymes and phase III drug transporters and show superior drug metabolizing activity compared to iHeps obtained by prior art methods. The iHeps thus provide a cell resource for pharmaceutical applications.