Abstract:
A transferring method, a manufacturing method, a device and an electronic apparatus of micro-LED. The method for transferring micro-LED, comprises: forming micro-LEDs (202) on a laser-transparent original substrate (201), providing an anisotropic conductive layer (203) on a receiving substrate (204), bringing the micro-LEDs (202) into contact with the anisotropic conductive layer (203) on the receiving substrate (204), irradiating the original substrate (201) with laser from the original substrate side to lift-off the micro-LEDs (202) from the original substrate (201), and processing the anisotropic conductive layer (203), to electrically connect the micro-LEDs (202) with the pads (205′) on the receiving substrate (204).
Abstract:
An integrated circuit package may include a substrate and an integrated circuit. The substrate may include at least one region, and a first magnetic material associated with the at least one region. The integrated circuit may have a second magnetic material associated therewith. The second magnetic material may be attracted to the first magnetic material to coupled the integrated circuit to the at least one region of the substrate. The IC package may be utilized in an RFID tag of an RFID system. An associated method for assembling an integrated circuit to a substrate is also provided.
Abstract:
An integrated circuit package may include a substrate and an integrated circuit. The substrate may include at least one region, and a first magnetic material associated with the at least one region. The integrated circuit may have a second magnetic material associated therewith. The second magnetic material may be attracted to the first magnetic material to coupled the integrated circuit to the at least one region of the substrate. The IC package may be utilized in an RFID tag of an RFID system. An associated method for assembling an integrated circuit to a substrate is also provided.
Abstract:
The present invention discloses a transferring method, a manufacturing method, a device and an electronic apparatus of micro-LED. The method for transferring micro-LED comprises: forming micro-LEDs on a laser-transparent original substrate; irradiating the original substrate with laser from the original substrate side to lift-off the micro-LEDs from the original substrate; bring the micro-LEDs into contact with pads preset on a receiving substrate through a contactless action.
Abstract:
A layer of microscopic, 3-terminal transistors is printed over a first conductor layer so that bottom electrodes of the transistors electrically contact the first conductor layer. A first dielectric layer overlies the first conductor layer, and a second conductor layer over the first dielectric layer contacts intermediate electrodes on the transistors between the bottom electrodes and top electrodes. A second dielectric layer overlies the second conductor layer, and a third conductor layer over the second dielectric layer contacts the top electrodes. The devices are thus electrically connected in parallel by a combination of the first conductor layer, the second conductor layer, and the third conductor layer. Separate groups of the devices may be interconnected to form more complex circuits. The resulting circuit may be a very thin flex-circuit.
Abstract:
A layer of microscopic, 3-terminal transistors is printed over a first conductor layer so that bottom electrodes of the transistors electrically contact the first conductor layer. A first dielectric layer overlies the first conductor layer, and a second conductor layer over the first dielectric layer contacts intermediate electrodes on the transistors between the bottom electrodes and top electrodes. A second dielectric layer overlies the second conductor layer, and a third conductor layer over the second dielectric layer contacts the top electrodes. The devices are thus electrically connected in parallel by a combination of the first conductor layer, the second conductor layer, and the third conductor layer. Separate groups of the devices may be interconnected to form more complex circuits. The resulting circuit may be a very thin flex-circuit.
Abstract:
Methods and apparatuses are provided for assembling micro-components on a support having a pattern of binding sites. In accordance with one method, a first fluid is provided on the surface of the support with the first fluid being of a type that increases viscosity when cooled, the first fluid having first micro-components suspended therein each adapted to engage the binding sites. First fluid proximate to selected binding sites is cooled to increase the viscosity of the responsive fluid proximate to the selected binding sites so that the first micro-components suspended in the first fluid are inhibited from engaging the selected binding sites.
Abstract:
A light engine ( 16 ) includes at least one LED ( 12 ) for generating light of one of a plurality of wavelengths. The LED ( 12 ) is disposed on the magnetic core printed circuit board ( 14 ). A heatsink ( 26 ) is disposed in thermal communication with a base ( 24 ) and the LED ( 12 ) for conducting thermal energy away from the LED ( 12 ). The light engine ( 16 ) is magnetically attached to the heatsink ( 26 ) via a magnet ( 50 ) which is attached to the heatsink ( 26 ) to create that a magnetic force between the magnetic core board ( 14 ) and the heatsink ( 26 ).
Abstract:
A transferring method, a manufacturing method, a device and an electronic apparatus of micro-LED. The method for transferring micro-LED, comprises: forming micro-LEDs (202) on a laser-transparent original substrate (201), providing an anisotropic conductive layer (203) on a receiving substrate (204), bringing the micro-LEDs (202) into contact with the anisotropic conductive layer (203) on the receiving substrate (204), irradiating the original substrate (201) with laser from the original substrate side to lift-off the micro-LEDs (202) from the original substrate (201), and processing the anisotropic conductive layer (203), to electrically connect the micro-LEDs (202) with the pads (205′) on the receiving substrate (204).