Abstract:
An apparatus and method for fracking optimization, wherein the apparatus includes at least a processor, and a memory, wherein the memory containing instructions configuring the at least a processor to receive a reservoir datum from at least a sensing device, generate a production training data include a plurality of reservoir datums as input correlated to a plurality of optimal production parameters as output, train a fracking optimization machine-learning model using the production training data, determine an optimal production parameter as a function of the fracking optimization machine-learning model, and generating an optimal production plan as a function of the optimal production parameter.
Abstract:
An apparatus for multi-stage fracking, wherein the apparatus includes a pump configured to pump a fracking fluid into a rock region comprises a plurality of rock zones, and a computing device communicatively connected to the pump, wherein the computing device includes at least a processor, and a memory communicatively connected to the at least a processor containing instructions configuring the at least a processor to receive reservoir data, determine an optimal fracking stimulation parameter as a function of the reservoir data, identify a fracking stage as a function of the optimal fracking stimulation parameter, and adjust a pump configuration of the pump as a function of the fracking stage.
Abstract:
An apparatus and method for fracking optimization, wherein the apparatus includes at least a processor, and a memory, wherein the memory containing instructions configuring the at least a processor to receive a reservoir datum from at least a sensing device, generate a production training data include a plurality of reservoir datums as input correlated to a plurality of optimal production parameters as output, train a fracking optimization machine-learning model using the production training data, determine an optimal production parameter as a function of the fracking optimization machine-learning model, and generating an optimal production plan as a function of the optimal production parameter.
Abstract:
A prechamber assembly includes a cylinder head including a coolant cavity, a prechamber body located within the cylinder head, the prechamber body including a nozzle, and an annular sleeve radially surrounding a portion of the prechamber body. The sleeve includes a plurality of coolant inlet holes. A portion of the prechamber body is radially spaced from the sleeve to form a coolant sleeve annulus extending along a length of the prechamber body above the coolant inlet holes. The coolant cavity and the coolant sleeve annulus are in fluid communication through the plurality of coolant inlet holes.
Abstract:
An item of footwear for increasing leg-muscle and/or lower-abdominal-/back-muscle tone comprising: a securing means for securing the item of footwear to a foot of a user; and a sole comprising at least an upper layer, for engaging a foot of a user in use or a further upper layer, and a lower layer, for engaging the ground in use, wherein the upper layer comprises two or more materials of different compressive resistances, or densities, arranged as a frontal/toe region, an arch region and a heel region, the sole is arranged such that application of a user's weight, during use, causes instability in at least one portion of the upper layer, which requires balance correction by a user.
Abstract:
The present invention relates generally to a method for the treatment and/or prophylaxis of osteoarthritis (OA). In accordance with the present invention, an antagonist of GM-CSF can be effective in the treatment of osteoarthritis. An antagonist of GM-CSF includes, but is not limited to, an antibody that is specific for GM-CSF or the GM-CSF receptor. The present invention further provides transgenic animals, such as a GM-CSF knock-out mouse, useful for testing antagonists in certain disease models.
Abstract:
A locomotive consist includes a first locomotive unit that receives a power command from a throttle signal or a dynamic brake signal from MU trainlines, a second locomotive unit with an energy storage system electrically connected to one or more second unit traction motors, and a hybrid control system on the first locomotive unit. The hybrid control system intercepts the throttle signal or the dynamic brake signal from the MU trainlines, calculates first and second alternate power commands for the first and second locomotive units, respectively, that when added together equal the power command received on the MU trainlines, communicates the first power command to the first locomotive prime engine or dynamic braking system, and communicates the second power command to the second locomotive unit.
Abstract:
A system, method, and computer program product are provided for adjusting a depth of displayed objects within a region of a display. In use, a display that displays one or more objects three-dimensionally is identified. Additionally, a region within the display is determined. Further, a depth of objects displayed within the region is adjusted.
Abstract:
According to one aspect of the present invention, a liquid reductant tank for supplying liquid reductant to a selective catalytic reduction system is disclosed. The tank includes a tank cavity for holding a liquid reductant and being at least partially defined by one or more side walls; a liquid reductant supply line at least partially situated within the tank cavity and for communicating liquid reductant from the tank cavity to outside of the tank cavity; and a heating element situated at least partially within the liquid reductant supply line and for thawing frozen reductant situated within the supply line during cold start conditions to obtain liquid reductant for use in a selective catalytic reduction system.
Abstract:
An electric motor having a casing positioned between a head end cap and a tail end cap is provided. An output shaft passes through the head end cap and the tail end cap and a cooling fan is mounted for rotation relative to the output shaft. The electric motor includes a fluid distribution chamber adjacent the tail end cap, an inlet port for supply of fluid to the chamber, and a plurality of discharge apertures for distributing fluid from the chamber toward the cooling fan. The fluid distribution chamber facilitates the washing and cleaning of the electric motor.