Abstract:
A communication system providing telephony communication across combined circuit switched and packet switched networks, such as a telephone network and the Internet, which are connectable to terminals, such as telephones and computers, for selective communication therebetween. The communication system includes an authorization and account control object in the packet switched network, multiple gateways between the circuit switched and packet switched networks providing controlled connectivity between those networks, and an information retrieval object in the packet switched network.
Abstract:
Offering vertical services to subscribers and service providers is an avenue to immediately improve the competitiveness of digital subscriber line access service, for example of the type offered by a local exchange carrier. To deliver high-quality vertical services, however, the underlying ADSL Data Network (ADN) or the like needs to establish Quality of Service (QoS) as a core characteristic and offer an efficient mechanism for insertion of the vertical services. The inventive network architecture introduces QoS into the ADN, in a manner that enables the delivery of sophisticated and demanding IP-based services to subscribers, does not affect existing Internet tiers of service, and is cost-effective in terms of initial costs, build-out, and ongoing operations. The architecture utilizes a switch capable of examining and selectively forwarding packets or frames based on higher layer information in the protocol stack, that is to say on information that is encapsulated in the layer-2 information utilized to define normal connectivity through the network. The switch enables segregation of upstream traffic by type and downstream aggregation of Internet traffic together with traffic from a local services domain for vertical services and other local services. Systems coupled to the local services domain alone or in combination with software in servers and/or a user's computer enable a testing of connectivity, throughput, QoS metrics and the like through selected points of the ADN network.
Abstract:
Limiting or controlling access to various services thereby performing a firewall function. An access router may permit or deny a packet based on at least a portion of a unique bit string (or context information) which replaced layer 2 header information (e.g., the layer 2 (e.g., MAC) address). Further, a particular quality of service may be indicated by at least a part of the unique bit string (or context information). The service provided to a group of customers, that group of customers being defined by at least a portion of the unique bit string (or context information), may be monitored. Multicast groups may be supported by checking at least a part of the unique bit string (or context information) to determine whether or not a customer associated with that port is permitted to join the multicast group.
Abstract:
Offering vertical services to subscribers and service providers is an avenue to immediately improve the competitiveness of digital subscriber line access service, for example of the type offered by a local exchange carrier. To deliver high-quality vertical services, however, the underlying ADSL Data Network (ADN) or the like needs to establish Quality of Service (QoS) as a core characteristic and offer an efficient mechanism for insertion of the vertical services. The inventive network architecture introduces QoS into the ADN, in a manner that enables the delivery of sophisticated and demanding IP-based services to subscribers, does not affect existing Internet tiers of service, and is cost-effective in terms of initial costs, build-out, and ongoing operations. The architecture utilizes a switch capable of examining and selectively forwarding packets or frames based on higher layer information in the protocol stack, that is to say on information that is encapsulated in the layer-2 information utilized to define normal connectivity through the network. The switch enables segregation of upstream traffic by type and downstream aggregation of Internet traffic together with traffic from a local vertical services domain.
Abstract:
The advanced intelligent network (AIN) to determine routing of voice calls alternatively between the public switched telephone network (PSTN) and a data packet network, such as the Internet, in accordance with the quality of service existing in the data packet network at the times of call origination. The user's acceptable level of service may be predefined with a threshold quality level stored in the user's Call Processing Record (CPR) in the AIN Integrated Services Control Point (ISCP). On a per call basis, the caller linked to a first public switched network may indicate a preference to route through the Internet. This indication is recognized by the AIN system, in response to which the quality of service currently present on the Internet for completion of the call is measured. If the result exceeds the stored threshold, the call is setup and routed through the Internet to the switched network link to the destination party. If the quality of service on the Internet is not satisfactory, the call is alternatively routed through the PSTN, which may include an Interexchange Carrier link. The AIN system automatically controls the alternative routing of such calls.
Abstract:
Limiting or controlling access to various services thereby performing a firewall function. An access router may permit or deny a packet based on at least a portion of a unique bit string (or context information) which replaced layer 2 header information (e.g., the layer 2 (e.g., MAC) address). Further, a particular quality of service may be indicated by at least a part of the unique bit string (or context information). The service provided to a group of customers, that group of customers being defined by at least a portion of the unique bit string (or context information), may be monitored. Multicast groups may be supported by checking at least a part of the unique bit string (or context information) to determine whether or not a customer associated with that port is permitted to join the multicast group.
Abstract:
A system and method using enhanced processing, responsive to domain name translation requests, to provide selective routing services through a public packet switched data network. The name processing applies to translation of a domain name into a group of Internet Protocol (IP) addresses and to providing routing information for a packet data network such as the Internet. Following name translation into a group of addresses communication is automatically established between a calling terminal and a terminal designated by one of the addresses and determined through processing which effects linkage with the first terminal to respond. The selective routing is particularly advantageous for processing of voice telephone communications through the Internet packet data network based on domain name translations. One or more domain names can be translated into a group of addresses which may include a mixture of Internet (IP) addresses and telephone number addresses, along with routing procedures with respect to the addresses.
Abstract:
A number of gateway objects interconnect circuit switched and packet switched networks, such as the telephone network and the Internet, for example to enable telephony communication across the combined networks. A directory object coupled to the packet network provides address translation capability, and the directory object polls or communicates with the gateways to provide an intelligent selection of one of the gateway objects, typically for egress to the telephone network. The system also includes an authorization control object. After gateway selection, a calling terminal attempts communication through the gateway object. The gateway object then queries the authorization control object, which instructs the gateway object to proceed only if the requested communication between the calling terminal and the destination terminal is authorized.
Abstract:
A control node, such as a services control point, of an intelligent telephone network interfaces to a wireless broadband network for signaling communications with broadband terminals. In normal operation, the terminals present video or other broadband information carried on the wireless network, typically via an associated television set. During processing of a telephone call, a central office switching system of the telephone network will recognize a predetermined event in call processing which triggers a query to the control node. Ultimately, the control node will return an instruction to the switching system to continue call processing. However, as part of its own processing, the control node sends a message through the broadband network to the broadband terminal of the subscriber to which the telephone call relates. If operational, the terminal may display call related information contained in the message, e.g. Caller ID information for an incoming call. The display may also prompt the user to input information. If so, the set-top terminal will transmit the subscriber input information upstream through the wireless broadband network to the control node. In such a case, the control node formulates its instruction to the central office switching system to control further processing of the telephone call, at least in part, based on the subscriber input information. The call processing of the present invention applies to both incoming and outgoing calls.
Abstract:
A communication system providing telephony communication across combined circuit switched and packet switched networks, such as a telephone network and the Internet, which are connectable to terminals, such as telephones and computers, for selective communication therebetween. The communication system includes an authorization and account control object in the packet switched network, multiple gateways between the circuit switched and packet switched networks providing controlled connectivity between those networks, and an information retrieval object in the packet switched network.