Abstract:
A connector assembly includes a substrate assembly and a receptacle. The substrate assembly includes a first substrate layer having a conductive trace that is accessible for direct electrical interconnection with a first conductor associated with another device. A second substrate layer on the assembly includes an electrical contact for electrical interconnection with a second conductor associated with the other device. The electrical contact on the second substrate layer is disposed such that when the substrate assembly is inserted into the receptacle, the electrical contact is electrically connected with the second conductor, a direct electrical interconnection between the conductive trace and the first conductor is maintained. The arrangement is advantageous in that the connector assembly is capable of transmitting low frequency signals through electrical connections that also serve to maintain a high frequency direct electrical interconnection.
Abstract:
A line circuit includes tip and ring voltage amplifiers each having an output resistively connected via tip and ring feed resistors to tip and ring leads in a telephone line. The tip and ring feed resistors have closely matched ohmic values, and are part of a resistance network which also includes first and second voltage dividers. The first voltage divider is connected in series between the output of the tip voltage amplifier and an end of the ring feed resistor remote from the output of the ring voltage amplifier, and includes a first voltage tap. The second voltage divider is connected in series between the output of the ring voltage amplifier and an end of the tip feed resistor remote from the output of the tip voltage amplifier, and includes a second voltage tap. A control circuit includes a differential input connected across the first and second voltage taps. In operation the control circuit causes the tip and ring voltage amplifiers to provide energizing direct current for the telephone line. Tip and ring feedback networks, connected across the respective tip and ring feed resistors, provide feedback signals to the tip and ring voltage amplifiers such that in operation common mode rejection of longitudinally induced a.c. signals on the telephone line is enhanced.
Abstract:
A technique for facilitating signal transmission at high signal frequencies in a multi-layer substrate is disclosed. In one embodiment a multi-layer substrate comprises a conductor or pair of conductors, a first dielectric layer on a first side of the conductor or pair of conductors and a second dielectric layer on a second side of the conductor or pair of conductors. An air channel is provided in the first dielectric layer, the air channel formed to be substantially coextensive with the conductor or pair of conductors. A conductive shield surrounds the conductor or pair of conductors, the first dielectric layer, and the second dielectric layer in order to eliminate crosstalk. The conductor or pair of conductors may have discrete spaced edges and the width of the conductor or pair of conductors may be increased in order to adjust the impedance because of the low dielectric constant of air. Furthermore, additional air channels and a supporting layer may be included in the structure.
Abstract:
A technique for electrically interconnecting a signal between a first circuit board and a second circuit board is disclosed. In each board, at least one signal conductor is shielded by an electrically conductive shield. Multiple conductors may be shielded by the same shield. A first opening is formed in the electrically conductive shield of the first circuit board and a second opening is formed in the electrically conductive shield of the second circuit board so as to expose the signal conductor in the each circuit board. An electrically conductive adhesive, reflowed solder paste, or interposer/elastomer device is applied surrounding at least one of the openings and may further be applied within at least one of the openings. The first circuit board and the second circuit board are then positioned such that the first opening and the second opening are aligned and a signal propagating along the first signal conductor is electrically interconnected to the second signal conductor.
Abstract:
An improved electrical interconnection between a first circuit board and a second circuit board is provided. In one embodiment, the first circuit board has a substantially rigid circuit portion having a plurality of circuit layers, including a first signal layer, and a first interconnection portion, including the first signal layer, for mating with a second interconnection portion of the second circuit board. The first circuit board also includes a flexible portion, including the first signal layer, for connecting the substantially rigid circuit portion to the first interconnection portion. The flexible portion allows the first interconnection portion to be oriented substantially perpendicular to the substantially rigid circuit portion such that a mating of the first interconnection portion with the second interconnection portion results in a substantially orthogonal electrical interconnection arrangement between the first circuit board and the second circuit board.
Abstract:
Inner layer traces on a multilayer printed wiring board are exposed to enable direct interconnection with another device such as a printed wiring board. The traces may be exposed by removing at least some of the dielectric substrate material around the traces, or by extending the traces beyond the other layers of the printed wiring board. Corresponding conductors associated with the other device are placed in direct physical contact with the exposed inner layer traces, and may be aligned and secured with guide plates, alignment pins and spring members. Such direct connection mitigates the need for vias, and has more favorable electrical characteristics for high frequency signal transmission.
Abstract:
A technique for facilitating signal transmission at high signal frequencies in a multi-layer substrate is disclosed. In one embodiment a multi-layer substrate comprises a conductor or pair of conductors, a first dielectric layer on a first side of the conductor or pair of conductors and a second dielectric layer on a second side of the conductor or pair of conductors. An air channel is provided in the first dielectric layer, the air channel formed to be substantially coextensive with the conductor or pair of conductors. A conductive shield surrounds the conductor or pair of conductors, the first dielectric layer, and the second dielectric layer in order to eliminate crosstalk. The conductor or pair of conductors may have discrete spaced edges and the width of the conductor or pair of conductors may be increased in order to adjust the impedance because of the low dielectric constant of air. Furthermore, additional air channels and a supporting layer may be included in the structure.
Abstract:
A protection arrangement for a telephone subscriber line interface circuit is disclosed. The arrangement is particularly useful for protecting an electronic telephone set from over-voltage and over-current fault conditions. The arrangement provides a FET that operates in saturation mode to connect an office battery to the subscriber line under normal operation. The FET also provides isolation capabilities for protecting the line circuit from an over-current condition on the subscriber line. Over-voltage protection is provided by way of an isolation relay between the line circuit and the subscriber line. Both the FET and isolation relay are operated by a controller that uses timers in the methods of over-voltage and over-current protection that it performs. A further capability of the arrangement is that it resets itself after the fault condition has ended. This feature is particularly useful in the case of fault conditions of short duration.
Abstract:
A wireless communication system comprising a plurality of antennae, the antennae being arranged in a grid pattern over a communication region, wireless portable terminals located within the communication region for emitting and/or receiving electromagnetic signals via the antennae, apparatus for determining the position of at least one of the terminals within the communication region relative to the grid pattern.
Abstract:
An interconnection device has a substrate that includes a conductive trace having an exposed portion at an edge of the substrate. The exposed portion is tapered toward the edge of the substrate. The exposed portion is provided for direct physical contact with a second conductive trace exposed at an edge of a second substrate. A high frequency direct electrical interconnection is thereby provided that reduces the disadvantageous effects of lateral, longitudinal, and co-planar misalignment between the conductive traces.