Abstract:
A projector includes a light source unit that supplies light, and a spatial light modulator that modulates light supplied from the light source unit according to an image signal. The spatial light modulator is driven by an applied voltage whose polarity is reversed according to a polarity-reversing frequency which is specific to the spatial light modulator. The light source unit supplies light which is modulated according to pulse width modulation for which fundamental frequency is set based on the polarity-reversing frequency.
Abstract:
A projector is provided which can secure long-term reliability and enable high-speed start-up through suppression of local heat generation of phosphor. The projector includes a light source device including an excitation light source emitting excitation light, a phosphor disk on which a phosphor that converts the excitation light into fluorescence is continuously formed in a circumferential direction of the phosphor disk, a motor unit rotating the phosphor disk in the circumferential direction, a light modulation device generating an image light through modulation of light including the fluorescence, and a projection optical system projecting the image light. If the number of rotations of the phosphor disk reaches a predetermined number that is smaller than a target number, the excitation light source is turned on, while if the number of rotations of the phosphor disk is increased after reaching the predetermined number, an output of the excitation light source is increased.
Abstract:
An electro-optical device includes a display unit that has a plurality of pixel portions constituting a display area on a substrate and an image signal processing. The image signal processing circuit generates an image signal that sets a first subframe frame luminance of the pixel portion in a first subframe and sets a second subframe luminance of the pixel portion in a second subframe. The first subframe and the second subframe are obtained by partitioning a first frame of a first frame image signal. The first frame has a frame luminance. The first subframe luminance is higher than the frame luminance and the second subframe luminance is lower than the frame luminance.
Abstract:
An electro-optic device has electro-optic elements; a storage units storing a first table including pairs of a gray-scale value and an a-bit sub-field code and a second table including pairs of a gray-scale value and a b-bit (b>a) sub-field code; a converting unit converting the gray-scale value of an object pixel into the sub-field code using the second table when a difference in gray-scale value between a first image and a second image is less than a threshold value, while converting the gray-scale value of the object pixel into the sub-field code using the first table when the difference in gray-scale value between the first image and the second image is the threshold value or more; and a driving unit supplying a signal corresponding to the sub-field code converted by the converting unit to drive the electro-optic elements.
Abstract:
In order to both produce a high quality rubber solution that preserves the molecular structure of the rubber and improve productivity, the rubber solution is created by mixing a solvent (7) into a source material (6), stirring while applying a shear force to the source material (6), and separating the source material (6) into block (61) units that are subsequently dissolved in the solvent (7), thereby continuously performing a solvent addition process, a source material addition process, a separation process, a dissolving process, and a mixing process in a single container (2).
Abstract:
An electro-optical device includes a display panel having a switching transistor and a pixel electrode that are disposed in correspondence with an intersection of a scanning line and a data line, an opposing electrode that faces the pixel electrode, and an electro-optical layer that is pinched between the pixel electrode and the opposing electrode, a detection unit that detects a current flowing through the electro-optical layer, and a control unit, wherein, when a voltage of a high electric potential is defined to have the positive-polarity and a voltage of a low electric potential is defined to have the negative polarity with reference to the opposing electrode electric potential applied to the opposing electrode as a reference, a data signal of the positive polarity and a data signal of the negative polarity are alternately supplied to the pixel electrode through the data line.
Abstract:
The hybrid substrate of the present invention comprises a ceramic substrate assembly composed of a plurality of ceramic substrates, insulating resin layers disposed respectively on both surfaces of the ceramic substrate assembly such that they are opposed to each other, each of the insulating resin layers being made at least of a reinforcing material and a resin, and a metal layer disposed on each of the insulating resin layers. In particular, the hybrid substrate of the present invention comprises the plurality of ceramic substrates which are in the form of a tile arrangement along the same plane positioned between the opposed insulating resin layers.
Abstract:
An image display device for displaying an image on the basis of an image signal supplied from an image supply device includes a brightness detecting section that detects a gray level which characterizes brightness of a predetermined pattern image from a pattern image signal when the predetermined pattern image is supplied from the image supply device; a storing section that stores a reference gray level predetermined in the pattern image; a correction parameter setting section that sets a correction parameter for compensating by a difference between the gray level detected by the brightness detecting section and the reference gray level stored in the storing section; and a correcting section that corrects the brightness of the image signal supplied from the image supply device on the basis of the correction parameter.
Abstract:
An image display device having an optical modulation element, which modulates light emitted from a light source according to display information, and displaying a display image based on the display information includes: a unit adjusting the amount of illumination light with respect to light emitted from the light source on the basis of brightness information on the brightness of the display image based on the display information; a color conversion processing unit that performs a color conversion process according to the brightness information with respect to the display information so that the display image can be color-reproduced within a predetermined color space; and a display and driving unit that drives the optical modulation element on the basis of the display information having been subjected to the color conversion process so as to display the display image.
Abstract:
An electro-optical device includes a display panel having a switching transistor and a pixel electrode that are disposed in correspondence with an intersection of a scanning line and a data line, an opposing electrode that faces the pixel electrode, and an electro-optical layer that is pinched between the pixel electrode and the opposing electrode, a detection unit that detects a current flowing through the electro-optical layer, and a control unit wherein, when a voltage of a high electric potential is defined to have the positive-polarity and a voltage of a low electric potential is defined to have the negative polarity with reference to the opposing electrode electric potential applied to the opposing electrode as a reference, a data signal of the positive polarity and a data signal of the negative polarity are alternately supplied to the pixel electrode through the data line.