Abstract:
A method including evaluating, with respect to a parameter representing remaining uncertainty of a mathematical model fitting measured data, one or more mathematical models for fitting measured data and one or more measurement sampling schemes for measuring data, against measurement data across a substrate, and identifying one or more mathematical models and/or one or more measurement sampling schemes, for which the parameter crosses a threshold.
Abstract:
A device manufacturing method includes: exposing a first substrate using a lithographic apparatus to form a patterned layer having first features; processing the first substrate to transfer the first features into the first substrate; determining displacements of the first features from their nominal positions in the first substrate; determining a correction to at least partly compensate for the displacements; and exposing a second substrate using a lithographic apparatus to form a patterned layer having the first features, wherein the correction is applied for or during the exposing the second substrate.
Abstract:
A method of correcting an image characteristic of a substrate onto which one or more product features have been formed using a lithographic process, and an associated inspection apparatus method. The method includes measuring an error in the image characteristic of the substrate, and determining a correction for a subsequent formation of the product features based upon the measured error and a characteristic of one or more of the product feature(s).
Abstract:
A substrate is loaded onto a substrate support of a lithographic apparatus, after which the apparatus measures locations of substrate alignment marks. These measurements define first correction information allowing the apparatus to apply a pattern at one or more desired locations on the substrate. Additional second correction information is used to enhance accuracy of pattern positioning, in particular to correct higher order distortions of a nominal alignment grid. The second correction information may be based on measurements of locations of alignment marks made when applying a previous pattern to the same substrate. The second correction information may alternatively or in addition be based on measurements made on similar substrates that have been patterned prior to the current substrate.
Abstract:
A method of calculating process corrections for a lithographic tool, and associated apparatuses. The method comprises measuring process defect data on a substrate that has been previously exposed using the lithographic tool; fitting a process signature model to the measured process defect data, so as to obtain a model of the process signature for the lithographic tool; and using the process signature model to calculate the process corrections for the lithographic tool.
Abstract:
A method of calculating process corrections for a lithographic tool, and associated apparatuses. The method comprises measuring process defect data on a substrate that has been previously exposed using the lithographic tool; fitting a process signature model to the measured process defect data, so as to obtain a model of the process signature for the lithographic tool; and using the process signature model to calculate the process corrections for the lithographic tool.
Abstract:
A method of calculating process corrections for a lithographic tool, and associated apparatuses. The method comprises measuring process defect data on a substrate that has been previously exposed using the lithographic tool; fitting a process signature model to the measured process defect data, so as to obtain a model of the process signature for the lithographic tool; and using the process signature model to calculate the process corrections for the lithographic tool.
Abstract:
A method of calculating process corrections for a lithographic tool, and associated apparatuses. The method comprises measuring process defect data on a substrate that has been previously exposed using the lithographic tool; fitting a process signature model to the measured process defect data, so as to obtain a model of the process signature for the lithographic tool; and using the process signature model to calculate the process corrections for the lithographic tool.