Abstract:
A metrology target includes: a first structure arranged to be created by a first patterning process; and a second structure arranged to be created by a second patterning process, wherein the first structure and/or second structure is not used to create a functional aspect of a device pattern, and wherein the first and second structures together form one or more instances of a unit cell, the unit cell having geometric symmetry at a nominal physical configuration and wherein the unit cell has a feature that causes, at a different physical configuration than the nominal physical configuration due to a relative shift in pattern placement in the first patterning process, the second patterning process and/or another patterning process, an asymmetry in the unit cell.
Abstract:
A metrology target includes: a first structure arranged to be created by a first patterning process; and a second structure arranged to be created by a second patterning process, wherein the first structure and/or second structure is not used to create a functional aspect of a device pattern, and wherein the first and second structures together form one or more instances of a unit cell, the unit cell having geometric symmetry at a nominal physical configuration and wherein the unit cell has a feature that causes, at a different physical configuration than the nominal physical configuration due to a relative shift in pattern placement in the first patterning process, the second patterning process and/or another patterning process, an asymmetry in the unit cell.
Abstract:
A method including: obtaining a detected representation of radiation redirected by each of a plurality of structures from a substrate additionally having a device pattern thereon, wherein each structure has an intentional different physical configuration of the respective structure than the respective nominal physical configuration of the respective structure, wherein each structure has geometric symmetry at the respective nominal physical configuration, wherein the intentional different physical configuration of the structure causes an asymmetric optical characteristic distribution and wherein a patterning process parameter measures change in the physical configuration; and determining a value, based on the detected representations and based on the intentional different physical configurations, to setup, monitor or correct a measurement recipe for determining the patterning process parameter.
Abstract:
A method of determining focus of a lithographic apparatus has the following steps. Using the lithographic process to produce first and second structures on the substrate, the first structure has features which have a profile that has an asymmetry that depends on the focus and an exposure perturbation, such as dose or aberration. The second structure has features which have a profile that is differently sensitive to focus than the first structure and which is differently sensitive to exposure perturbation than the first structure. Scatterometer signals are used to determine a focus value used to produce the first structure. This may be done using the second scatterometer signal, and/or recorded exposure perturbation settings used in the lithographic process, to select a calibration curve for use in determining the focus value using the first scatterometer signal or by using a model with parameters related to the first and second scatterometer signals.
Abstract:
An inspection apparatus, method, and system are described herein. An example inspection apparatus includes an optical system and an imaging system. The optical system may be configured to output an illumination beam incident on a target including one or more features, the illumination beam polarized with a first polarization when incident on the target. The imaging system may be configured to obtain intensity data representing at least a portion of the illumination beam scattered by the one or more features, where the portion of the illumination beam has a second polarization orthogonal to the first polarization. The inspection apparatus may be further configured to generate image data representing an image of each of the feature(s) based on the intensity data, and determine a measurement of a parameter of interest associated with the feature(s) based on an amount of the portion of the illumination beam having the second polarization.
Abstract:
A method of determining focus of a lithographic apparatus has the following steps. Using the lithographic process to produce first and second structures on the substrate, the first structure has features which have a profile that has an asymmetry that depends on the focus and an exposure perturbation, such as dose or aberration. The second structure has features which have a profile that is differently sensitive to focus than the first structure and which is differently sensitive to exposure perturbation than the first structure. Scatterometer signals are used to determine a focus value used to produce the first structure. This may be done using the second scatterometer signal, and/or recorded exposure perturbation settings used in the lithographic process, to select a calibration curve for use in determining the focus value using the first scatterometer signal or by using a model with parameters related to the first and second scatterometer signals.