Abstract:
Disclosed is a method of determining a process window within a process space comprising obtaining contour data relating to features to be provided to a substrate across a plurality of layers, for each of a plurality of process conditions associated with providing the features across said plurality of layers and failure mode data describing constraints on the contour data across the plurality of layers. The failure mode data is applied to the contour data to determine a failure count for each process condition; and the process window is determined by associating each process condition to its corresponding failure count. Also disclosed is a method of determining an actuation constrained subspace of the process window based on actuation constraints imposed by the plurality of actuators.
Abstract:
A method for assigning features into at least first features and second features, the first features being for at least one first patterning device configured for use in a lithographic process to form corresponding first structures on a substrate and the second features being for at least one second patterning device configured for use in a lithographic process to form corresponding second structures on a substrate, wherein the method including assigning the features into the first features and the second features based on a patterning characteristic of the features.
Abstract:
A method of reconstructing a characteristic of a structure formed on a substrate by a lithographic process, and an associated metrology apparatus. The method includes combining measured values of a first parameter associated with the lithographic process to obtain an estimated value of the first parameter; and reconstructing at least a second parameter associated with the characteristic of the structure using the estimated value of the first parameter and a measurement of the structure. The combining may involve modeling a variation of the first parameter to obtain a parameter model or fingerprint of the first parameter.
Abstract:
A method of, and associated apparatus for, determining focus corrections for a lithographic projection apparatus. The method comprises exposing a plurality of global correction fields on a test substrate, each comprising a plurality of global correction marks, and each being exposed with a tilted focus offset across it; measuring a focus dependent characteristic for each of the plurality of global correction marks to determine interfield focus variation information; and calculating interfield focus corrections from the interfield focus variation information.
Abstract:
A method of evaluating a patterning process, the method including: obtaining the result of a first measurement of a first metrology target; obtaining the result of a second measurement of a second metrology target, the second metrology target having a structural difference from the first metrology target that generates a sensitivity difference and/or an offset, of a process parameter of the patterning process between the first and second metrology targets; and determining a value pertaining to the patterning process based on the results of the first and second measurements.
Abstract:
A method of determining overlay of a patterning process, the method including: obtaining a detected representation of radiation redirected by one or more physical instances of a unit cell, wherein the unit cell has geometric symmetry at a nominal value of overlay and wherein the detected representation of the radiation was obtained by illuminating a substrate with a radiation beam such that a beam spot on the substrate was filled with the one or more physical instances of the unit cell; and determining, from optical characteristic values from the detected radiation representation, a value of a first overlay for the unit cell separately from a second overlay for the unit cell that is also obtainable from the same optical characteristic values, wherein the first overlay is in a different direction than the second overlay or between a different combination of parts of the unit cell than the second overlay.
Abstract:
Disclosed is a method of measuring focus performance of a lithographic apparatus, and corresponding patterning device and lithographic apparatus. The method comprises using the lithographic apparatus to print one or more first printed structures and second printed structures. The first printed structures are printed by illumination having a first non-telecentricity and the second printed structures being printed by illumination having a second non-telecentricity, different to said first non-telecentricity. A focus dependent parameter related to a focus-dependent positional shift between the first printed structures and the second printed structures on said substrate is measured and a measurement of focus performance based at least in part on the focus dependent parameter is derived therefrom.
Abstract:
A substrate has first and second target structures formed thereon by a lithographic process. Each target structure has two-dimensional periodic structure formed in a single material layer on a substrate using first and second lithographic steps, wherein, in the first target structure, features defined in the second lithographic step are displaced relative to features defined in the first lithographic step by a first bias amount that is close to one half of a spatial period of the features formed in the first lithographic step, and, in the second target structure, features defined in the second lithographic step are displaced relative to features defined in the first lithographic step by a second bias amount close to one half of said spatial period and different to the first bias amount. An angle-resolved scatter spectrum of the first target structure and an angle-resolved scatter spectrum of the second target structure is obtained, and a measurement of a parameter of a lithographic process is derived from the measurements using asymmetry found in the scatter spectra of the first and second target structures.
Abstract:
A method of determining a parameter of a patterning process, the method including: obtaining a detected representation of radiation redirected by a structure having geometric symmetry at a nominal physical configuration, wherein the detected representation of the radiation was obtained by illuminating a substrate with a radiation beam such that a beam spot on the substrate was filled with the structure; and determining, by a hardware computer system, a value of the patterning process parameter based on optical characteristic values from an asymmetric optical characteristic distribution portion of the detected radiation representation with higher weight than another portion of the detected radiation representation, the asymmetric optical characteristic distribution arising from a different physical configuration of the structure than the nominal physical configuration.
Abstract:
A substrate having a plurality of features for use in measuring a parameter of a device manufacturing process and associated methods and apparatus. The measurement is by illumination of the features with measurement radiation from an optical apparatus and detecting a signal arising from interaction between the measurement radiation and the features. The plurality of features include first features distributed in a periodic fashion at a first pitch, and second features distributed in a periodic fashion at a second pitch, wherein the first pitch and second pitch are such that a combined pitch of the first and second features is constant irrespective of the presence of pitch walk in the plurality of features.