Abstract:
A light sensing device includes a substrate, a control unit and a light sensing unit. The control unit and the light sensing unit are disposed on the substrate. The control unit includes a gate electrode, a gate insulation layer, an oxide semiconductor pattern, a source electrode and a drain electrode. The gate insulation layer is disposed on the gate electrode, and the oxide semiconductor pattern is disposed on the gate insulation layer. The light sensing unit includes a bottom electrode, a light sensing diode and a top electrode. The light sensing diode is disposed on the bottom electrode, and the top electrode is disposed on the light sensing diode. The gate insulation layer partially covers the top electrode, and the gate insulation layer has a first opening partially exposing the bottom electrode. The drain electrode is electrically connected to the bottom electrode via the first opening.
Abstract:
A method of forming a photo sensor includes the following steps. A substrate is provided, and a first electrode is formed on the substrate. A first silicon-rich dielectric layer is formed on the first electrode for sensing an infrared ray, wherein the first silicon-rich dielectric layer comprises a silicon-rich oxide layer, a silicon-rich nitride layer, or a silicon-rich oxynitride layer. A second silicon-rich dielectric layer is formed on the first silicon-rich dielectric layer for sensing visible light beams, wherein the second silicon-rich dielectric layer comprises a silicon-rich oxide layer, a silicon-rich nitride layer, or a silicon-rich oxynitride layer. A second electrode is formed on the second silicon-rich dielectric layer.
Abstract:
A method of forming a photo sensor includes the following steps. A substrate is provided, and a first electrode is formed on the substrate. A first silicon-rich dielectric layer is formed on the first electrode for sensing an infrared ray, wherein the first silicon-rich dielectric layer comprises a silicon-rich oxide layer, a silicon-rich nitride layer, or a silicon-rich oxynitride layer. A second silicon-rich dielectric layer is formed on the first silicon-rich dielectric layer for sensing visible light beams, wherein the second silicon-rich dielectric layer comprises a silicon-rich oxide layer, a silicon-rich nitride layer, or a silicon-rich oxynitride layer. A second electrode is formed on the second silicon-rich dielectric layer.
Abstract:
An optical touch panel includes a light source unit and a processing unit, wherein the processing unit is for executing a brightness control method. The brightness control method includes steps below. The light source unit emits at a first intensity in a touch control mode. Responding to a switching condition, the touch panel is switched into a scan mode, and the light source unit emits at a second intensity in the scan mode.
Abstract:
A three-dimensional interaction display includes a display panel having a plurality of light sensing devices, a first light emitting device, a second light emitting device, and a processing circuit. The first light emitting device includes a first light emitting surface including a first pattern, and the first pattern includes a first shape boundary having a first total length. The second light emitting device includes a second light emitting surface including a second pattern, and the second pattern includes a second shape boundary having a second total length. The processing circuit is electrically connected to the plurality of light sensing devices for processing an image obtained by the light sensing devices, calculating the total length of the shape boundary of each of the patterns shown in the obtained image, and determining the corresponding light emitting device according to the total length of the shape boundary of each of the patterns.
Abstract:
An optical sensing device includes a thin film transistor disposed on a substrate, an optical sensor, a planar layer, and an organic light emitting diode. The optical sensor includes a metal electrode disposed on a gate dielectric layer of the thin film transistor and connecting to a drain electrode of the thin film transistor, an optical sensing layer disposed on the metal electrode, and a first transparent electrode disposed on the optical sensing layer. The planar layer covers at least a part of the thin film transistor and the optical sensor. The organic light emitting diode is disposed on the planar layer. The anode electrode and the cathode electrode of the organic light emitting diode are electrically coupled to a gate line and a data line respectively.
Abstract:
An optical sensing device includes a thin film transistor disposed on a substrate, an optical sensor, a planar layer, and an organic light emitting diode. The optical sensor includes a metal electrode disposed on a gate dielectric layer of the thin film transistor and connecting to a drain electrode of the thin film transistor, an optical sensing layer disposed on the metal electrode, and a first transparent electrode disposed on the optical sensing layer. The planar layer covers at least a part of the thin film transistor and the optical sensor. The organic light emitting diode is disposed on the planar layer. The anode electrode and the cathode electrode of the organic light emitting diode are electrically coupled to a gate line and a data line respectively.
Abstract:
An optical touch panel includes a light source unit and a processing unit, wherein the processing unit is for executing a brightness control method. The brightness control method includes steps below. The light source unit emits at a first intensity in a touch control mode. Responding to a switching condition, the touch panel is switched into a scan mode, and the light source unit emits at a second intensity in the scan mode.