Localized stressor formation by ion implantation

    公开(公告)号:US11728383B2

    公开(公告)日:2023-08-15

    申请号:US17032419

    申请日:2020-09-25

    CPC classification number: H01L29/1054 H01L21/265 H01L29/7606

    Abstract: A P-type field effect transistor (PFET) device and a method for fabricating a PFET device using fully depleted silicon on insulator (FDSOI) technology is disclosed. The method includes introducing germanium into the channel layer using ion implantation. This germanium implant increases the axial stress in the channel layer, improving device performance. This implant may be performed at low temperatures to minimize damage to the crystalline structure. Further, rather than using a long duration, high temperature anneal process, the germanium implanted in the channel layer may be annealed using a laser anneal or a rapid temperature anneal. The implanted regions are re-crystallized using the channel layer that is beneath the gate as the seed layer. In some embodiments, an additional oxide spacer is used to further separate the raised source and drain regions from the gate.

    Handling For High Resistivity Substrates

    公开(公告)号:US20220328337A1

    公开(公告)日:2022-10-13

    申请号:US17226277

    申请日:2021-04-09

    Abstract: A method of modifying a high-resistivity substrate so that the substrate may be electrostatically clamped to a chuck is disclosed. The bottom surface is implanted with a resistivity-reducing species. In this way, resistivity of the bottom surface of the substrate may be greatly reduced. In some embodiments, to implant the bottom surface, a coating is applied to the top surface. After application of the coating, the substrate is flipped so that the front surface contacts the top surface of the chuck.
    The ions are then implanted into the exposed bottom surface to create the low resistivity layer. The resistivity of the low resistivity layer proximate the bottom surface after implant may be less than 1000 ohm-cm. Once the bottom surface has been implanted, the substrate may be processed conventionally. The low resistivity layer may later be removed by wafer backside thinning processes.

    Localized Stressor Formation By Ion Implantation

    公开(公告)号:US20220102500A1

    公开(公告)日:2022-03-31

    申请号:US17032419

    申请日:2020-09-25

    Abstract: A P-type field effect transistor (PFET) device and a method for fabricating a PFET device using fully depleted silicon on insulator (FDSOI) technology is disclosed. The method includes introducing germanium into the channel layer using ion implantation. This germanium implant increases the axial stress in the channel layer, improving device performance. This implant may be performed at low temperatures to minimize damage to the crystalline structure. Further, rather than using a long duration, high temperature anneal process, the germanium implanted in the channel layer may be annealed using a laser anneal or a rapid temperature anneal. The implanted regions are re-crystallized using the channel layer that is beneath the gate as the seed layer. In some embodiments, an additional oxide spacer is used to further separate the raised source and drain regions from the gate.

    Isolation method to enable continuous channel layer

    公开(公告)号:US11664419B2

    公开(公告)日:2023-05-30

    申请号:US17065065

    申请日:2020-10-07

    CPC classification number: H01L29/0653 H01L21/76243

    Abstract: A method of isolating sections of the channel layer in a SOI workpiece is disclosed. Rather than etching material to create trenches, which are then filled with a dielectric material, ions are implanted into portions of the channel layer to transform these implanted regions from silicon or silicon germanium into an electrically insulating material. These ions may comprise at least one isolating species, such as oxygen, nitrogen, carbon or boron. This eliminates various processes from the fabrication sequence, including an etching process and a deposition process. Advantageously, this approach also results in greater axial strain in the channel layer, since the channel layer is continuous across the workpiece.

    Handling for high resistivity substrates

    公开(公告)号:US11594441B2

    公开(公告)日:2023-02-28

    申请号:US17226277

    申请日:2021-04-09

    Abstract: A method of modifying a high-resistivity substrate so that the substrate may be electrostatically clamped to a chuck is disclosed. The bottom surface is implanted with a resistivity-reducing species. In this way, resistivity of the bottom surface of the substrate may be greatly reduced. In some embodiments, to implant the bottom surface, a coating is applied to the top surface. After application of the coating, the substrate is flipped so that the front surface contacts the top surface of the chuck. The ions are then implanted into the exposed bottom surface to create the low resistivity layer. The resistivity of the low resistivity layer proximate the bottom surface after implant may be less than 1000 ohm-cm. Once the bottom surface has been implanted, the substrate may be processed conventionally. The low resistivity layer may later be removed by wafer backside thinning processes.

Patent Agency Ranking