Abstract:
The invention relates to an improved process for producing composite elements comprising at least one outer layer and at least one isocyanate-based rigid foam layer by means of a fixed applicator apparatus and in which the flowable starting material comprises the following components: A) at least one polyisocyanate, B) at least one compound which reacts with isocyanate groups to form urethane, C) at least one blowing agent, D) catalysts comprising at least one compound D1) which catalyzes isocyanurate formation and at least one compound D2) which catalyzes polyurethane formation, comprising at least one amino group, and E) optionally auxiliaries and additives, where the manner of use of component A) and of component B) is such that the isocyanate index is at least 180, and where the ratio by weight of the compound D2) to the compound D1) is from 0.75 to 8.
Abstract:
Rigid polyurethane foams or rigid polyisocyanurate foams with low brittleness are produced by the reaction of polyisocyanate polyetherester polyols based on aromatic dicarboxylic acids obtained by esterification of a dicarboxylic acid composition containing aromatic dicarboxylic acids and aliphatic dicarboxylic acids, fatty acids, aliphatic or cycloaliphatic diols having 2 to 18 carbon atoms or alkoxylates thereof, and a polyether polyol having a functionality of not less than 2.
Abstract:
Provided herein is a process for preparing a rigid polyisocyanurate foam including reacting a composition (A) including a polyesterol, a blowing agent including formic acid, a catalyst system including at least one trimerization catalyst and at least one polyisocyanate as component (B), wherein composition (A) further includes at least one polyether alcohol prepared by addition of alkylene oxides to toluenediamine. Further provided herein is a rigid polyisocyanurate foam obtained through the process described herein and the use of said rigid polyisocyanurate foam as insulating material.
Abstract:
Described herein are processes for producing a polyurethane foam by mixing the following: (a) polymeric MDI with less than 40% by weight content of difunctional MDI and an aliphatic halogenated hydrocarbon compound (d1) composed of 2 to 5 carbon atoms and of at least one hydrogen atom and of at least one fluorine and/or chlorine atom, where the compound (d1) includes at least one carbon-carbon double bond, to give an isocyanate component (A), and reacting with a polyol component (b) to give the polyurethane foam. Also described herein is a polyurethane foam obtainable by said process.
Abstract:
The invention relates to a process for producing rigid polyurethane foams by reaction of A) one or more organic polyisocyanates, B) one or more polyester polyols, C) optionally one or more polyether polyols, D) a flame-retardant mixture, E) further auxiliaries or addition agents, F) one or more blowing agents, and also G) catalysts, wherein said flame-retardant mixture D) comprises d1) 10 to 90 wt %, based on the amount of flame-retardant mixture, of a flame retardant having a boiling point of not more than 220° C., and d2) 10 to 90 wt %, based on the amount of flame-retardant mixture, of a phosphorus-containing flame retardant having a boiling point of above 220° C., wherein said components d1) and d2) total 100 wt %.
Abstract:
The invention relates to rigid polyurethane foams obtainable by reaction of A) organic or modified organic polyisocyanates or mixtures thereof, B) compounds having two or more isocyanate-reactive hydrogen atoms in the presence of C) optionally further polyester polyols, D) optionally polyetherol polyols, E) optionally flame retardants, F) one or more blowing agents, G) catalysts, and H) optionally further auxiliaries and/or additives, wherein component B) comprises the reaction product of a1) 15 to 40 wt % of one or more polyols or polyamines having an average functionality of 2.5 to 8, a2) 2 to 30 wt % of one or more fatty acids and/or fatty acid monoesters, a3) 35 to 70 wt % of one or more alkylene oxides of 2 to 4 carbon atoms.
Abstract:
The present invention relates to a process for preparing rigid polyurethane foams or rigid polyisocyanurate foams by using certain polyetherester polyols B) based on aromatic dicarboxylic acids, optionally further polyester polyols C), which differ from those of component B), and polyether polyols D), wherein the mass ratio of total components B) and optionally C) to component D) is less than 1.6. The present invention also relates to the rigid foams thus obtainable and to their use for producing sandwich elements having rigid or flexible outer layers. The present invention further relates to the underlying polyol components.
Abstract:
The present invention relates to polyester polyols obtainable or obtained by esterification of 10 to 70 mol % of at least one compound from the group consisting of terephthalic acid (TPA), dimethyl terephthalate (DMT), polyethylene terephthalate (PET), phthalic anhydride (PA), phthalic acid and isophthalic acid, 0.1 to 30 mol % of one or more fatty acids and/or fatty acid derivatives, 10 to 70 mol % of one or more aliphatic or cycloaliphatic diols having 2 to 18 carbon atoms or alkoxylates thereof, 5 to 70 mol % of a polyether polyol prepared by alkoxylating an aromatic starter molecule having a functionality of not less than 2, and of 0 to 70 mol % of a tri- or polyol other than the polyether polyol, all based on the total amount of the components used, wherein the amounts used of the components add up to 100 mol %. The present invention further relates to a process for producing rigid polyurethane or polyisocyanurate foams which comprises reacting an isocyanate component with a polyol component (PK) comprising a polyester polyol of the present invention and further components, to the polyol component as such and also to the rigid polyurethane or polyisocyanurate foams obtainable or obtained by a process of the present invention. The present invention also relates to the method of using a polyester polyol (P1) of the present invention in the manufacture of rigid polyurethane foams or rigid polyisocyanurate foams.
Abstract:
The present invention relates to a process for the production of a composite element. The process includes (i) provision of an outer layer with an uncoated surface and a coated surface coated at least partially with a composition (B) including at least one inorganic material, (ii) treatment of the uncoated surface of the outer layer and (iii) application, to the treated surface of the outer layer, of a composition (Z2) suitable for the production of a polyurethane foam and/or polyisocyanurate foam. The present invention further relates to a composite element obtainable or obtained by a process of the invention, and also to the use of a composite element obtainable or obtained by a process of the invention or of a composite element of the invention as insulation material or in the construction of façades.
Abstract:
The invention relates to rigid polyurethane foams obtainable by reaction of A) organic or modified organic polyisocyanates or mixtures thereof, B) compounds having two or more isocyanate-reactive hydrogen atoms in the presence of C) optionally further polyester polyols, D) optionally polyetherol polyols, E) optionally flame retardants, F) one or more blowing agents, G) catalysts, and H) optionally further auxiliaries and/or additives, wherein component B) comprises the reaction product of a1) 15 to 40 wt % of one or more polyols or polyamines having an average functionality of 2.5 to 8, a2) 2 to 30 wt % of one or more fatty acids and/or fatty acid monoesters, a3) 35 to 70 wt % of one or more alkylene oxides of 2 to 4 carbon atoms.