Abstract:
Solid state folded leaf spring force transducers are fabricated by batch photolithographic and etching techniques from a monocrystalline material, such as silicon. The folded leaf spring structure includes elongated gaps separating adjacent leaf spring leg portions, such elongated gaps being oriented parallel to a crystallographic axis of the monocrystalline material. In a preferred embodiment the monocrystalline material is of diamond cubic type and the leaf spring gaps extend in mutually orthogonal directions parallel to the and crystallographic axes, respectively. In a preferred method of fabricating the spring structure, the structure is etched from a monocrystalline wafer by means of an anisotropic etchant so as to more precisely define angles and dimensions of the resultant spring structure. In one embodiment, the gaps between adjacent leg portions of the spring structure are sealed in a fluid tight manner by means of oxide membranes left intact upon etching of the spring structure. In an accelerometer embodiment, sensing masses of equal weight are affixed to opposite sides of the spring structure for dynamically balancing same. .Iadd.
Abstract:
An infrared laser absorption spectrometer is disclosed wherein a pair of detector cells are disposed serially along the laser beam path. The laser beam is modulated to produce a modulation of the absorption by the sample materials in the two cells. Modulated absorption by the samples produces an acoustic wave in each cell which is detected by a suitable microphone and subtracted so as to produce a difference signal corresponding to the difference in infrared absorption between the two cells so that undesired background effects common to both cells are cancelled. A pressure controller, which is responsive to the pressure difference between the sample pressure in the two cells at a frequency substantially below the beam modulation frequency is employed for controlling the pressure differential. In one embodiment the pressure controller includes a compliant membrane partitioning the two cells so that the membrane may move so as to equalize the pressures. In a second embodiment, deflection of the diaphragm of a differential microphone coupled into both cells is employed to derive an output utilized to control either the flow through the cells and/or the volume of the respective cells to control the pressure difference between the cells.
Abstract:
A percutaneous agent delivery or sampling device comprising a sheet having a plurality of microblades for piercing and anchoring to the skin for increasing transdermal flux of an agent and for improving the attachment of the device to the skin.
Abstract:
A magneto optic or optical disk drive comprises a laser source for providing laser beam, and a lens or compound lens for focussing the laser onto a currently inserted recording disk with specific overcoat thickness. In one embodiment, the lens is a compound lens that can focus aberration-free spots on different types of disk media having recording layers located under overcoats of different thicknesses. When a specific disk is inserted, only one spot in focussed onto the current recording layer. Furthermore, if the disk spins rapidly, it can wobble. The lens or compound lens comprises different regions where the focal length may vary slightly and continuously or discretely. Because of this, as the disk wobbles, the lens can nonetheless continue to focus laser light onto a small spot on the recording media, providing increased depth of focus in the vicinity of the currently inserted recording media. Furthermore, the increased depth of focus will also remedy problems related to the change in focal length of the lens with changes in wavelength of the laser source. Because some of these changes in wavelength occur abruptly, this is also a case in which the limited performance of the auto-focus tracking system would be overly burdened.
Abstract:
Three dimensional single crystalline structures, such as folded cantilever beams supported from a frame and supporting a central structure free to move relative to the frame, are fabricated by anisotropically etching through openings in etch stop layers on opposite sides of the substrate wafer. The openings are patterned and aligned so that the etch stop layers are undercut to define etch stop portions interconnected by unetched substrate material.
Abstract:
A percutaneous agent delivery or sampling device comprising a sheet having a plurality of microblades for piercing and anchoring to the skin for increasing transdermal flux of an agent and for improving the attachment of the device to the skin.
Abstract:
A method of producing a high resolution expanded analog gray scale mask is described. Using an inorganic chalcogenide glass, such as a selenium germanium, coated with a thin layer of silver, a gray scale mask may be produced with accurate control of the size, uniformity and variance of the pixels. The selenium germanium glass is composed of column structures arranged perpendicularly to the substrate giving a possible edge precision of 100 .ANG.. The column structures also prevent undercutting during the etching process, thus permitting pixels to be placed close together. Accordingly, selenium germanium may be used as a high resolution gray scale mask with an expanded analog gray scale. The gray scale mask may be used to impress information as a modulated thickness on a selenium germanium photoresist layer on an inorganic substrate. The selenium germanium photoresist layer may then transfer the gray scale to the substrate.
Abstract:
Miniature thermal fluid flow sensors of the airfoil type are made in batch form by forming the thermal fluid flow sensors on a thin sheet of material and bonding the sheet over an array of duct structures and dicing the individual sensors and duct structures apart. In one thermal flow sensor configuration, a flow heater is dispsoed inbetween first and second thermal flow sensors in heat exchanging relation therewith. A third thermal flow sensor is disposed upstream of the others out of heat exchanging relation with the heater for operation of the heater at a certain temperature above that sensed by the third sensor. In the low flow regime, flow is measured by the difference between the outputs of the first and second sensors, whereas in the high flow regime, the power required to maintain the temperature of the heater serves as a measure of the flow.
Abstract:
A method for manufacturing a mask (100) for use in x-ray photolithographic processes includes the step of coating a silicon wafer (10) with a layer of boron nitride (12). A masking substance (14) is used to coat one side of the boron nitride coated wafer, and the boron nitride is etched off of the other side of the wafer. The wafer (10) is then bonded to a pyrex ring (16) using a field assisted thermal bonding process. During the field assisted thermal bonding process, the silicon (11) is bonded directly to the pyrex (16). Then, a zirconium layer (24) is used to cover the mask and is selectively etched where it is desired to remove a circular portion of the silicon. Thereafter the silicon is subjected to a semianisotropic etch. The remaining structure includes a pyrex ring bonded to a silicon ring across which a layer of boron nitride is stretched. The layer of boron nitride is subjected to an annealing process and is then coated with an x-ray opaque material.
Abstract:
In a miniature valve, a valve seat is formed by aperturing a plate. A cantilever leaf spring is disposed overlying the apertured plate for controlling the flow of fluid therethrough. An electrostatic potential applied between the cantilever leaf spring and the valve plate pulls the leaf spring over the apertured plate for variably controlling flow through the valve in accordance with the magnitude of the applied potential. In a preferred embodiment, the cantilever leaf springs are made in batch form by etching a silicon wafer. A flow controller is provided by measuring the electrical capacitance of the valve, comparing it with a reference voltage and deriving a feedback voltage applied to the valve for controlling flow therethrough. In one embodiment, the width of the cantilever leaf spring valve member is narrowed toward its free end for finer control of flow.