Abstract:
A particulate filter having a porous ceramic honeycomb structure with a first end, a second end, and a plurality of walls having wall surfaces defining a plurality of inner channels. Filtration material deposits are disposed on one or more of the wall surfaces of the honeycomb body. The highly porous deposits provide durable high clean filtration efficiency with small impact on pressure drop through the filter.
Abstract:
A porous ceramic honeycomb article comprising a honeycomb body formed from cordierite ceramic, wherein the honeycomb body has a porosity P %≧55% and a cell channel density CD≧150 cpsi. The porous channel walls have a wall thickness T, wherein (11+(300−CD)*0.03)≧T≧(8+(300−CD)*0.02), a median pore size ≦20 microns, and a pore size distribution with a d-factor of ≦0.35. The honeycomb body has a specific pore volume of VP≦0.22. The porous ceramic honeycomb article exhibits a coated pressure drop increase of ≦8 kPa at a flow rate of 26.5 cubic feet per minute when coated with 100 g/L of a washcoat catalyst and loaded with 5 g/L of soot.
Abstract:
Engine exhaust gas treatment article comprising a contoured honeycomb body (300) including a contoured outlet end face (316) are disclosed. Also disclosed are methods of manufacturing an engine exhaust gas treatment article.
Abstract:
A compound honeycomb body comprising a first honeycomb section having a volume V1 and a second honeycomb section fluidly connected to the first honeycomb having a volume V2 is provided. The first honeycomb section comprises a low mass high porosity porous ceramic substrate. The second honeycomb section comprises a standard porous ceramic substrate. Wherein V1/V2 comprises a ratio in a range from about 50/50 to about 10/90.
Abstract:
A particulate filter having a porous ceramic honeycomb structure with a first end, a second end, and a plurality of walls having wall surfaces defining a plurality of inner channels. Filtration material deposits are disposed on one or more of the wall surfaces of the honeycomb body. The highly porous deposits provide durable high clean filtration efficiency with small impact on pressure drop through the filter.
Abstract:
A particulate filter having a porous ceramic honeycomb structure with a first end, a second end, and a plurality of walls having wall surfaces defining a plurality of inner channels. Filtration material deposits are disposed on one or more of the wall surfaces of the honeycomb body. The highly porous deposits provide durable high clean filtration efficiency with small impact on pressure drop through the filter.
Abstract:
Disclosed herein are formed ceramic substrates comprising an oxide ceramic material, wherein the formed ceramic substrate comprises a low elemental alkali metal content, such as less than about 1000 ppm. Also disclosed are composite bodies comprising at least one catalyst and a formed ceramic substrate comprising an oxide ceramic material, wherein the composite body has a low elemental alkali metal content, such as less than about 1000 ppm, and methods for preparing the same.
Abstract:
Engine exhaust gas treatment article comprising a contoured honeycomb body (300) including a contoured outlet end face (316) are disclosed. Also disclosed are methods of manufacturing an engine exhaust gas treatment article.
Abstract:
Cellular ceramic articles are manufactured from a green cellular ceramic body that includes a binder material and a plurality of channels. At least one of the channels is coated with a slurry that includes a green coating composition and a solvent to form a coating layer. The binder material is insoluble in the solvent.
Abstract:
A porous ceramic honeycomb article comprising a honeycomb body formed from cordierite ceramic, wherein the honeycomb body has a porosity P %≧55% and a cell channel density CD≧150 cpsi. The porous channel walls have a wall thickness T, wherein (11+(300−CD)*0.03)≧T≧(8+(300−CD)*0.02), a median pore size≦20 microns, and a pore size distribution with a d-factor of ≦0.35. The honeycomb body has a specific pore volume of VP≦0.22. The porous ceramic honeycomb article exhibits a coated pressure drop increase of ≦8 kPa at a flow rate of 26.5 cubic feet per minute when coated with 100 g/L of a washcoat catalyst and loaded with 5 g/L of soot.