Abstract:
A method of controlling a vehicle accessory includes determining a transmission of a vehicle is in a non-park setting; in response to determining the transmission of the vehicle is in the non-park setting, receiving speed data indicative of a speed of the vehicle; determining a speed to operate the vehicle accessory based on the vehicle speed; comparing the determined speed to operate the vehicle accessory to a speed threshold; and in response to determining that the determined speed is below the speed threshold, providing a command to the vehicle accessory to one of deactivate the vehicle accessory or operate the vehicle accessory at a reduced operating state relative to a current operating state of the vehicle accessory.
Abstract:
A method of controlling a vehicle accessory includes determining a transmission of a vehicle is in a non-park setting; in response to determining the transmission of the vehicle is in the non-park setting, receiving speed data indicative of a speed of the vehicle; determining a speed to operate the vehicle accessory based on the vehicle speed; comparing the determined speed to operate the vehicle accessory to a speed threshold; and in response to determining that the determined speed is below the speed threshold, providing a command to the vehicle accessory to one of deactivate the vehicle accessory or operate the vehicle accessory at a reduced operating state relative to a current operating state of the vehicle accessory.
Abstract:
A method includes determining, by a controller, a presence of an available electrical energy quantity generated from an energy generation event; comparing, by the controller, the available electrical energy quantity to an available energy capacity of a battery storage system; and responsive to determining the available electrical energy quantity exceeds the available energy capacity of the battery storage system, causing, by the controller, a transmission of at least a portion of the available energy quantity to a heat management system.
Abstract:
A method includes determining, by a controller, a presence of an available electrical energy quantity generated from an energy generation event; comparing, by the controller, the available electrical energy quantity to an available energy capacity of a battery storage system; and responsive to determining the available electrical energy quantity exceeds the available energy capacity of the battery storage system, causing, by the controller, a transmission of at least a portion of the available energy quantity to a heat management system.
Abstract:
Hybrid power systems include an internal combustion engine and a motor/generator connectable with the engine. A reefer unit is configured to receive power from the motor/generator via a reefer power system that includes an export power inverter and an energy storage device.
Abstract:
Systems and methods to reduce operating expenses of a vehicle based on control of operation of a vehicle system. The system includes a controller. The controller is structured to receive one or more parameters comprising expense data, adjust operating expenses of a vehicle system based on the one or more parameters, and generate a command structured to adjust operation of the vehicle system responsive to the adjustment of the operating expenses.
Abstract:
Systems and methods to reduce operating expenses of a vehicle based on control of operation of a vehicle system. The system includes a controller. The controller is structured to receive one or more parameters comprising expense data, adjust operating expenses of a vehicle system based on the one or more parameters, and generate a command structured to adjust operation of the vehicle system responsive to the adjustment of the operating expenses.
Abstract:
Systems and methods are disclosed for controlling a torque output of a motor/generator via one or more torque commands generated by a controller. The target output being determined by a target torque based upon a low voltage side target of a DC/DC converter including a battery operatively coupled to one or more low voltage loads, a high voltage side target of the DC/DC converter including a supercapacitor operatively coupled with an inverter that is operatively coupled to the motor/generator, and a ripple compensation torque.
Abstract:
Various systems, methods, and apparatuses disclosed herein provide for receiving pressure data for an accumulator system, the pressure data providing an indication of a pressure in an accumulator tank of the accumulator system; receiving energy data, the energy data indicating an availability of free energy for use to charge the accumulator tank; and activating a charging source of the accumulator tank to charge the accumulator tank based on at least one of the pressure data and the energy data.
Abstract:
Hybrid power systems include an internal combustion engine and a motor/generator connectable with the engine. A reefer unit is configured to receive power from the motor/generator via a reefer power system that includes an export power inverter and an energy storage device.