Abstract:
Provided is a temperature-pressure complex sensor with an anti-radiation property including a first sensing material which is a porous conductive film, and second sensing materials which are dispersedly disposed on a surface of the first sensing material. The second sensing materials may include a conductive structure having a two-dimensional crystal structure, and nanoparticles having a radiation shielding property which are disposed between crystal layers of the conductive structure.
Abstract:
Provided is a graphene optical device. The optical device includes a lower clad, an optical waveguide extended on the lower clad in a first direction, a first dielectric layer disposed on the optical waveguide, and a graphene layer extended on the first dielectric layer in a second direction.
Abstract:
Provided is a gas sensor including a substrate, a sensing electrode extended in a first direction on the substrate, and a plurality of heaters disposed in a second direction crossing the first direction on the substrate. The plurality of heaters is separated at both sides of the sensing electrode. The plurality of heaters includes graphene.
Abstract:
Disclosed are a method of growing a high-quality single layer graphene by using a Cu/Ni multi-layer metallic catalyst, and a graphene device using the same. The method controls and grows a high-quality single layer graphene by using the Cu/Ni multilayer metallic catalyst, in which a thickness of a nickel lower layer is fixed and a thickness of a copper upper layer is changed in a case where a graphene is grown by a CVD method. According to the method, it is possible to obtain a high-quality single layer graphene, and improve performance of a graphene application device by utilizing the high-quality single layer graphene and thus highly contribute to industrialization of the graphene application device.
Abstract:
A light emitting diode includes: a substrate; an n-type semiconductor layer disposed on the substrate; an active layer disposed on the n-type semiconductor layer; a p-type semiconductor layer disposed on the active layer; a first electrode disposed on the p-type semiconductor layer and made of a metal oxide; a second electrode disposed on the first electrode and made of graphene; a p-type electrode disposed on the second electrode; and an n-type electrode disposed on the n-type semiconductor layer, wherein a work function of the first electrode is less than a work function of the p-type semiconductor layer, but is greater than a to work function of the second electrode.
Abstract:
Provided is a graphene optical device. The optical device includes a lower clad, an optical waveguide extended on the lower clad in a first direction, a first dielectric layer disposed on the optical waveguide, and a graphene layer extended on the first dielectric layer in a second direction.
Abstract:
Provided is a button device including a humidity sensor. The button device includes a substrate having a plurality of sensing regions, a housing on the substrate, the housing separating a first sensing region of the plurality of sensing regions from other sensing regions, a porous structure within the housing, the porous structure having through-holes, a first electrode on the porous structure, a second electrode on the porous structure, the second electrode being electrically connected to the first electrode through the porous structure, and a temperature sensor disposed adjacent to the first sensing region to sense a temperature of the first sensing region, The porous structure includes a body having an outer surface defining the through-holes, the body having an air gap therein.
Abstract:
Provided is a gene amplifying and detecting device. The gene amplifying and detecting device includes: a gene amplifying chip including a chamber formed therein; a reaction solution filled in the chamber and including a fluorescent material; a light source located at one side of the gene amplifying chip; a light detector located at the other side of the gene amplifying chip; and a graphene heater formed on an inner surface or outer surface of the gene amplifying chip so as to heat the reaction solution.
Abstract:
A method of manufacturing a junction electronic device having a 2-Dimensional (2D) material as a channel, includes forming a pattern portion by surface-treating a substrate so that the patterned portion has a higher surface potential than other portions of the substrate; bonding a 2D material to rthe patterned portion having the higher surface potential by spraying a liquid including 2D material flakes onto the substrate; forming a pair of first electrodes in contact with both ends of the 2D material disposed on the substrate; forming a dielectric layer on the first electrodes and the 2D material; and forming a second electrode on the dielectric layer. The 2D materials are disposed at desired positions by chemical exfoliation.
Abstract:
Provided is a graphene nanoribbon sensor. The sensor includes a substrate, a graphene layer formed on the substrate in a first direction, and an upper dielectric layer on the graphene layer. Here, the graphene layer may have a plurality of electrode regions respectively separated in the first direction and a channel between the plurality of electrode regions.