摘要:
Apparatus and methods are provided for enabling wafer-scale encapsulation of microelectromechanical (MEM) devices (e.g., resonators, filters) to protect the MEMs from the ambient and to provide either a controlled ambient or a reduced pressure. In particular, methods for wafer-scale encapsulation of MEM devices are provided, which enable encapsulation of MEM devices under desired ambient conditions that are not determined by the deposition conditions of a sealing process in which MEM release via holes are sealed or pinched-off, and which prevent sealing material from being inadvertently deposited on the MEM device during the sealing process.
摘要:
Apparatus and methods are provided for enabling wafer-scale encapsulation of microelectromechanical (MEM) devices (e.g., resonators, filters) to protect the MEMs from the ambient and to provide either a controlled ambient or a reduced pressure. In particular, methods for wafer-scale encapsulation of MEM devices are provided, which enable encapsulation of MEM devices under desired ambient conditions that are not determined by the deposition conditions of a sealing process in which MEM release via holes are sealed or pinched-off, and which prevent sealing material from being inadvertently deposited on the MEM device during the sealing process.
摘要:
Apparatus and methods are provided for enabling wafer-scale encapsulation of microelectromechanical (MEM) devices (e.g., resonators, filters) to protect the MEMs from the ambient and to provide either a controlled ambient or a reduced pressure. In particular, methods for wafer-scale encapsulation of MEM devices are provided, which enable encapsulation of MEM devices under desired ambient conditions that are not determined by the deposition conditions of a sealing process in which MEM release via holes are sealed or pinched-off, and which prevent sealing material from being inadvertently deposited on the MEM device during the sealing process.
摘要:
An optoelectronic assembly for an electronic system includes a support electronic chip set configured for at least one of providing multiplexing, demultiplexing, coding, decoding and optoelectronic transducer driving and receive functions. A first substrate having a first surface and an opposite second surface is in communication with the support electronic chip set via the first surface while a second substrate is in communication with the second surface of the first substrate. The second substrate is configured for mounting at least one of data processing, data switching and data storage chips. An optoelectronic transducer is in signal communication with the support electronic chip set and an optical fiber array is aligned at a first end with the optoelectronic transducer and with an optical signaling medium at a second end. An electrical signal from the support electronic chip set is communicated to the optoelectronic transducer via an electrical signaling medium, and the support electronic chip set and the optoelectronic transducer share a common thermal path for cooling.
摘要:
A cooling system for an electronic component on a component carrier is provided. The system includes a frame, a spray manifold, and a sealing member. The frame has an opening and is connectable to the component carrier so that an annular area is defined between the opening and the electronic component. The spray manifold is sealed over the opening to define a spray area over a back surface of the electronic component. The spray manifold sprays a cooling fluid on the back surface. The sealing member seals the annular region so that input/output connectors on the component carrier are isolated from the cooling fluid.
摘要:
Node Interconnect architectures to implement a high performance supercomputer are provided. For example, a node interconnect architecture for connecting a multitude of nodes (or processors) of a supercomputer is implemented using an all-to-all electrical and optical connection network which provides two independent communication paths between any two processors of the supercomputer, wherein a communication path includes at most two electrical links and one optical link.
摘要:
A cooling module for cooling a semiconductor is provided and includes a land grid array (LGA) interposer, a substrate with an LGA side and a chip side, a cooler, a load frame attached to the substrate and formed to define an aperture in which the cooler is removably disposable, a spring clamp removably attachable to the load frame and configured to apply force from the load frame to the cooler such that the substrate and the cooler are urged together about the semiconductor and a load assembly device configured to urge the load frame and the LGA interposer together.
摘要:
A chip stack structure includes a logic chip having an active device surface, and memory slices of a memory unit vertically aligned such that a surface of the memory slices is oriented perpendicular to the active device surface of the logic chip. The chip stack structure also includes wiring patterned on an upper surface of the memory slices, the wiring electrically connecting memory leads of the memory slices to logic grids corresponding to logic grid connections of the logic chip.
摘要:
Apparatuses and methods are provided for facilitating cooling of an electronic component. The apparatus includes a vapor-compression refrigeration system. The vapor-compression refrigeration system includes an expansion component, an evaporator, a compressor, and a condenser coupled in fluid communication via a refrigerant flow path. The evaporator is coupled to and cools the electronic component. The apparatus further includes a contaminant extractor coupled in fluid communication with the refrigerant flow path. The extractor includes a refrigerant boiling filter and a heater. At least a portion of refrigerant passing through the refrigerant flow path passes through the refrigerant boiling filter, and the heater provides heat to the refrigerant boiling filter to boil refrigerant passing through the filter. By boiling refrigerant passing through the filter, contaminants are extracted from the refrigerant, and are deposited in the refrigerant boiling filter.
摘要:
An enhanced 3D integration structure comprises a logic microprocessor chip bonded to a collection of vertically stacked memory slices and an optional set of outer vertical slices comprising optoelectronic devices. Such a device enables both high memory content in close proximity to the logic circuits and a high bandwidth for logic to memory communication. Additionally, the provision of optoelectronic devices in the outer slices of the vertical slice stack enables high bandwidth direct communication between logic processor chips on adjacent enhanced 3D modules mounted next to each other or on adjacent packaging substrates. A method to fabricate such structures comprises using a template assembly which enables wafer format processing of vertical slice stacks.