Abstract:
There is provided a soundproof structure which is light and thin, which has air permeability so that wind and heat can pass therethrough and accordingly no heat accumulates on the inside, and which is suitable for equipment, automobiles, and household applications. The soundproof structure has one or more soundproof cells. Each soundproof cell includes a frame having a through-hole through which sound passes, a film fixed to the frame, an opening portion configured to include one or more holes drilled in the film, and a weight disposed on the film. The soundproof structure has a first shielding peak frequency, which is determined by the opening portion drilled in the film and at which a transmission loss is maximized, on a lower frequency side than a first natural vibration frequency of the film of each soundproof cell and a second shielding peak frequency, which is determined by the weight and at which a transmission loss is maximized, on a higher frequency side than the first natural vibration frequency of the film, and selectively insulates sound in a predetermined frequency band centered on the first shielding peak frequency and sound in a predetermined frequency band centered on the second shielding peak frequency.
Abstract:
A metal film of a measurement device including a transparent dielectric substrate is irradiated with first light from a transparent dielectric substrate side, an optical electric field enhanced by an optical electric field enhancing effect of a localized plasmon induced to a surface of the metal film by the irradiation is generated, light emitted from the transparent dielectric substrate side is detected, a specimen installed on a surface of a metal fine concavo-convex structure layer and a matrix agent are irradiated with second light from a side opposite to the side of the irradiation with the first light in a state where a voltage is applied to the metal fine concavo-convex structure layer through a voltage application electrode, an analysis target substance for mass spectrometry in the specimen is desorbed from the surface by the irradiation, and the desorbed analysis target substance is detected.
Abstract:
A thin film of a first metal or a metal oxide is formed on a substrate. A structure layer of fine protrusions and recesses of the first metal or a hydroxide of the metal oxide is formed by causing the thin film formed on the substrate to undergo a hydrothermal reaction. Thereafter, a metal structure layer of fine protrusions and recesses is formed on the surface of the structure layer of fine protrusions and recesses.
Abstract:
There is provided a soundproof structure that can selectively block sound having a specific frequency emitted from equipment, automobiles, and general households and can change the cutoff frequency of the sound in accordance with a change in the frequency of sound to be blocked. The above problem is solved by providing a laminated film, in which two or more films each including one or more holes drilled therein are laminated, and two rigid frames, which fix the laminated film so as to be interposed from both sides of the laminated film, and making at least parts of the one or more holes in the respective films of the laminated film overlap each other.
Abstract:
An optical field enhancement device that generates an enhanced optical field on a surface of a metal film by an optical field enhancement effect of localized plasmon induced on the surface of the metal film by light projected onto a nanostructure on which the metal film is formed, the device including a transparent substrate having a transparent nanostructure on a surface, a metal film formed on a surface of the nanostructure, and a support member for supporting a subject at a position spaced apart from the surface of the metal film.
Abstract:
Pixels of a mask image with which a target object is irradiated are shifted by a determined distance by sequentially turning on one light emission point or two or more light emission points of a light source with respect to a single mask pattern generated in a spatial modulation element, a pixel shift amount of the mask pattern determined by a position of the light emission point to be turned on of the light source is known, the target object is irradiated with mask images according to a plurality of mask patterns depending on the positions of the light emission point of the light source and the spatial modulation element, and a computer calculates a correlation between a light intensity detected by a detector and the mask image with which the target object is irradiated, to construct an image of the target object. With this, an imaging device and an imaging method capable of achieving an increase in speed of mask pattern irradiation in single-pixel imaging and significantly increasing an input speed of single-pixel imaging are provided.
Abstract:
A soundproof structure has at least one soundproof cell including a frame having a hole portion and a film fixed to the frame so as to cover the hole portion. The soundproof cell is disposed in an opening member having an opening in a state in which a film surface of the film is inclined with respect to an opening cross section of the opening member and a region serving as a ventilation hole, through which gas passes, is provided in the opening member.
Abstract:
Two or more soundproof cells arranged in a two-dimensional manner are provided. At least one of the soundproof cells is a first soundproof cell configured to include a first frame having a first through-hole. At least one of the other soundproof cells is a second soundproof cell including a second frame having a second through-hole and a film fixed to the second frame. A first shielding peak frequency, which is determined by the first through-hole of the first soundproof cell and at which a transmission loss is maximized, is present on a lower frequency side than a first natural vibration frequency of the film of the second soundproof cell, and sound in a predetermined frequency band centered on the first shielding peak frequency is selectively insulated.
Abstract:
A soundproof structure has a plurality of soundproof cells arranged in a two-dimensional manner. Each of the plurality of soundproof cells includes a frame formed of a frame member forming an opening and a film fixed to the frame. Two or more types of soundproof cells having different first resonance frequencies are present in the plurality of soundproof cells. A shielding peak frequency at which transmission loss is maximized is present within a range equal to or higher than a lowest frequency among first resonance frequencies of the soundproof cells and equal to or lower than a highest frequency among the first resonance frequencies of the soundproof cells.
Abstract:
A soundproof structure has one or more soundproof cells. Each of the one or more soundproof cells includes a frame having a through-hole, a film fixed to the frame, and an opening portion configured to include one or more holes drilled in the film. Neither end portions of the through-hole of the frame are closed. The soundproof structure has a shielding peak frequency, which is determined by the opening portion of each of the one or more soundproof cells and at which a transmission loss is maximized, on a lower frequency side than a first natural vibration frequency of the film of each of the one or more soundproof cells, and selectively insulates sound in a predetermined frequency band including the shielding peak frequency at its center. Accordingly, there is provided a soundproof structure that is light and thin, does not depend on the position and shape of a hole, has high robustness as a sound insulation material, is stable, has air permeability, has no heat, and is excellent in manufacturability, and a soundproof structure manufacturing method.