Abstract:
Embodiments of the disclosure provide a photonic integrated circuit (PIC) die including: a semiconductor substrate; active circuitry on the semiconductor substrate; an inter-level dielectric (ILD) over the semiconductor substrate and the active circuitry; a photonic element extending from the active circuitry on the semiconductor substrate; and a guard ring on the semiconductor substrate and within the ILD, the guard ring surrounding the active circuitry, the guard ring including: a conductive body, and a conductive bridge element extending over the photonic element.
Abstract:
Circuits for programming an electrical fuse, methods for programming an electrical fuse, and methods for designing a silicon-controlled rectifier for use in programming an electrical fuse. A programming current for the electrical fuse is directed through the electrical fuse and the silicon-controlled rectifier. Upon reaching a programmed resistance value for the electrical fuse, the silicon-controlled rectifier switches from a low-impedance state to a high-impedance state that interrupts the programming current.
Abstract:
The present disclosure relates to semiconductor structures and, more particularly, to electrostatic discharge (ESD) protection structures for eFuses. The structure includes an electrostatic discharge (ESD) protection structure operatively coupled to an eFuse, which is structured to prevent unintentional programming of the eFuse due to an ESD event originating at a source.
Abstract:
Circuits for programming an electrical fuse, methods for programming an electrical fuse, and methods for designing a silicon-controlled rectifier for use in programming an electrical fuse. A programming current for the electrical fuse is directed through the electrical fuse and the silicon-controlled rectifier. Upon reaching a programmed resistance value for the electrical fuse, the silicon-controlled rectifier switches from a low-impedance state to a high-impedance state that interrupts the programming current.
Abstract:
Embodiments of the disclosure provide a photonic integrated circuit (PIC) die including: a semiconductor substrate; active circuitry on the semiconductor substrate; an inter-level dielectric (ILD) over the semiconductor substrate and the active circuitry; a photonic element extending from the active circuitry on the semiconductor substrate; and a guard ring on the semiconductor substrate and within the ILD, the guard ring surrounding the active circuitry, the guard ring including: a conductive body, and a conductive bridge element extending over the photonic element.
Abstract:
The present disclosure relates to an electrostatic discharge (ESD) clamp and, more particularly, to an ESD clamp with reduced off-state power consumption. The structure includes: one or more inverters connected to a timing circuit; a first transistor receiving an output signal from a last of the one or more inverters and an output signal from the timing circuit; a second transistor with its gate connected to the first transistor, in series; and a voltage node providing a separate voltage to a gate of the second transistor.
Abstract:
The present disclosure relates to semiconductor structures and, more particularly, to electrostatic discharge (ESD) protection structures for eFuses. The structure includes an electrostatic discharge (ESD) protection structure operatively coupled to an eFuse, which is structured to prevent unintentional programming of the eFuse due to an ESD event originating at a source.