Abstract:
Robotic systems and methods are provided with an end effector having lockable compliance. A robotic system for manipulating a workpiece includes an arm having a pair of sections connected by a joint assembly, with a lock disposed in the joint assembly. A gripper is connected on the arm and is configured to alternately grip and release the workpiece. A controller operates the lock to alternately lock and unlock the joint assembly. The gripper holds the workpiece during a deformation of the workpiece, while the controller may unlock the lock to allow movement of the joint assembly to relieve forces on the arm arising during a deformation of the workpiece.
Abstract:
An electrical connector assembly includes a pair of electrical connectors for electrically connecting to one another to close an electric circuit. The assembly further includes a connection indicator attached to one or more of the electrical connectors. The connection indicator generates a feedback, in response to the electrical connectors being one of connected to one another and disconnected from one another. The connection indicator is separate from the electric circuit, and the feedback is at least one of a radio frequency signal (RF signal), an electronic signal, a visible light, and an acoustic signal.
Abstract:
A method of laser welding a workpiece stack-up (10) that includes at least two overlapping steel workpieces (12, 14) comprises directing a laser beam (40) at a top surface (26) of the workpiece stack-up to form a keyhole (56) surrounded by a molten steel weld pool (58). The laser beam is conveyed along a predefined weld pattern that includes one or more nonlinear inner weld paths (66) and an enclosed outer peripheral weld path (68) surrounding the one or more nonlinear inner weld paths. During conveyance of the laser beam along the one or more nonlinear inner weld paths, the keyhole fully penetrates through the workpiece stack-up from the top surface of the stack-up to the bottom surface (28) of the stack-up. The method produces weld joints between the steel workpieces that do not have an intentionally imposed gap formed between their faying surfaces.
Abstract:
A vehicle charging station includes a track configured to extend across a plurality of vehicle parking spaces and a movable charging apparatus supported by the track. The movable charging apparatus is translatable along the track between the plurality of vehicle parking spaces to charge one or more vehicles. The movable charging apparatus includes a base slidably coupled with the track, an end effector in mechanical communication with the base and configured to electrically couple with an electric vehicle disposed within one of the plurality of vehicle parking spaces, and a power delivery circuit configured to receive an electrical charge from a power source and to controllably provide the electrical charge to the electric vehicle.
Abstract:
The present invention relates to a method and apparatus for limiting the contact force between a moving device and another object, using a parallel mechanism and torque limiters where the threshold force to activate the force limiting mechanism is not related to the configuration of the moving device or the location of the contact force relative to the activation point of the force limiting mechanism, and where the mechanism may be configured for one, two or three degrees of freedom. A counterbalance mechanism is also provided to counteract gravity load when the force limiting mechanism is configured for three degrees of freedom and responsive to contact forces including a vertical element. In particular, the invention relates to a method and apparatus for limiting the contact force between a moving robotic device and a contactable object.
Abstract:
A reconfigurable gripping device for securely gripping, lifting, and transporting a work piece is provided. The reconfigurable gripping device may include at least a first finger and a second finger each secured to a base platform with a base support. Each of the respective fingers may have a first link, a second link, and a third link each having a corresponding drive mechanism to individually drive the respective link. The first link drive mechanism and second link drive mechanism are configured to control the grasp and adaptability of each of the respective fingers to place the third link upon a work piece. The third link drive mechanism is configured to drive the third link of each of the respective fingers to apply a clamping force upon the work piece.
Abstract:
A method of inferring intentions of an operator to move a robotic system includes monitoring the intention of the operator, with a controller. The intention of the operator is inferred to be one of a desired acceleration and a desired deceleration. The intention of the operator is also as a desired velocity. Admittance parameters are modified as a function of at least one of the inferred acceleration, deceleration, and velocity.
Abstract:
A robotic system includes a support structure, a motor mount assembly, first and second parallel chains, a serial translation assembly, a sensor and a control module. The motor mount assembly includes rotary motors, where the rotary motors include a first rotary motor and a second rotary motor. The first and second parallel chains are connected to the movable platform, the rotary motors and the motor mount assembly. The serial translation assembly is connected to the supporting structure and the motor mount assembly and includes a linear actuator and a third rotary motor. The sensor is connected to the movable platform and detects force applied by a human operator on the movable platform and generates a signal indicative of the force applied. The control module controls the rotary motors and the third rotary motor based on the signal to assist the human operator in moving the movable platform.
Abstract:
Robotic systems are provided for flexibility in assembly operations. A robotic system includes a suction module having a front side with a face shaped to match a mating component and a rear side with a coupling for a suction line. Openings extend through the face. The suction module defines internal passages connecting the coupling with the at least one opening through the face. An end-effector has a base plate, a mounting plate selectively moveable relative to the base plate, and a clamp. The suction module is selectively mounted to the mounting plate and releasably secured by the clamp. An actuator is mounted to selectively move the mounting plate and the suction module relative to the base plate.
Abstract:
A method for joining a plurality of workpieces includes providing a rotating drive tool. A fastener is secured to the drive tool. The drive tool is then rotatably driven such that a distal end of the fastener rotates against a surface of the plurality of workpieces. A heated material zone is then generated on the plurality of workpieces as caused by friction from the rotation of the fastener against the surface of the plurality of workpieces. The distal end of the fastener is rotatably and axially driven through the heated material zone. Finally, the drive tool is removed from the fastener, such that when the heated material zone cools, a portion of the heated material zone is fused to the fastener.