Abstract:
A manipulator system configured to perform a work to a workpiece being moved by a moving device, includes a robotic arm, having one or more joints and to which a tool configured to perform the work to the workpiece is attached, an operating device configured to operate the robotic arm, a first imaging means configured to image the workpiece, while following the movement of the workpiece, a second imaging means fixedly provided in a work area to image a situation of the work to the workpiece, a displaying means configured to display an image imaged by the first imaging means and an image imaged by the second imaging means, and a control device configured to control the operation of the robotic arm based on an operating instruction of the operating device, while detecting a moving amount of the workpiece being moved by the moving device and carrying out a tracking control of the robotic arm according to the moving amount of the workpiece.
Abstract:
An industrial robot and a method of operating the same which are capable of appropriately handling, when an abnormal state occurs during an automatic operation of the robot, the abnormal state without significantly degrading the work efficiency. The industrial robot includes a robot main body having a robot arm, a robot control device configured to control operation of the robot main body and an abnormal state detecting device configured to detect abnormality in a work state of the robot main body. The robot control device includes an automatic operation performing means for controlling the operation of the robot main body to perform an automatic operation based on a given operation program, and an automatic operation correcting means for correcting the operation of the robot main body in the automatic operation based on a manual control performed by an operator according to a detection result of the abnormal state detecting device.
Abstract:
A robot system which is capable of reducing an operator's workload and easily correcting preset operation of a robot. The robot system includes a robot main body having a plurality of joints, a control device configured to control operation of the robot main body and an operating device including a teaching device configured to teach the control device one of positional information on the robot main body and angular information on the plurality of joints so as to execute an automatic operation of the robot main body and a manipulator configured to receive a manipulating instruction from an operator to manually operate the robot main body or correct the operation of the robot main body under the automatic operation.
Abstract:
A remote control robot system includes a master arm, and a slave arm having a plurality of control modes of an automatic mode in which the slave arm operates based on a prestored task program and a manual mode in which the slave arm operates based on manipulation of an operator received by the master arm. The master arm includes one or more motors configured to drive joints of the master arm, and a motor actuator configured to generate a torque instruction value that operates the joints according to an external force applied to the master arm and gives drive current corresponding to the torque instruction value to the motor. The motor actuator generates, when the control mode is the manual mode, the torque instruction value so that the joints operate according to the external force while resisting a frictional force of the motor.
Abstract:
A method, a non-transitory computer readable medium, and an apparatus for operating the robotic control system comprising a master apparatus (64) in communication with an input device (58, 60) having a handle (102) and a slave system (54, 74) having a tool (66, 67) having an end effector (73) whose position and orientation is determined in response to a current position and current orientation of the handle. The method involves producing a desired end effector position and orientation in response to a current position and orientation of the handle. The method involves causing the input device to provide haptic feedback that impedes translational movement of the handle, while permitting rotational movement of the handle and preventing movement of the end effector, when a rotational alignment difference between the handle and the end effector meets a disablement criterion. The method further involves re-enabling translational movement of the handle when the rotational alignment difference meets an enablement criterion.
Abstract:
A robotic navigation system is configured to move a robotic arm of a robot relative to a surface. The robotic navigation system includes a sensor, a handheld navigation unit, and a controller. The sensor is associated with the robotic arm. The sensor is configured to determine a status parameter of the robotic arm relative to the surface and provide sensor signals indicative of the status parameter. The handheld navigation unit is moveable with respect to one or more of a plurality of axes to indicate a commanded movement for the robot. The handheld navigation unit is configured to provide movement signals based on the commanded movement for the robot. The controller is configured to provide control signals for the robot based on the movement signals provided by the handheld navigation unit and the sensor signals provided by the sensor, wherein the control signals are configured to move the robot. The resulting robotic motion may dynamically track a desired feature or a component by correction and overriding a portion of the hand guided motion vector.
Abstract:
A system may include a controller configured to determine a user interface status, wherein the user interface status includes user interaction of a user interface. The controller may also be configured to determine a drive mechanism location relative to a first limit and a second limit and select a clutching location based on the user interface status and drive mechanism location.
Abstract:
A method of inferring intentions of an operator to move a robotic system includes monitoring the intention of the operator, with a controller. The intention of the operator is inferred to be one of a desired acceleration and a desired deceleration. The intention of the operator is also as a desired velocity. Admittance parameters are modified as a function of at least one of the inferred acceleration, deceleration, and velocity.
Abstract:
A system may include a controller configured to determine a user interface status, wherein the user interface status includes user interaction of a user interface. The controller may also be configured to determine a drive mechanism location relative to a first limit and a second limit and select a clutching location based on the user interface status and drive mechanism location.
Abstract:
A robot controller and a robot system capable of stably changing the orientation of a front end of a robot by applying a force to the front end, and moving each axis to a desired position. The robot controller for moving the robot based on the force applied to the robot includes a control point specifying part which specifies a control point in relation to the robot, and an operation commanding part which outputs a command so that the robot performs rotational movement about the control point. The robot has a structure constituted by sequentially combining three or more axes including at least three rotation axes, and rotation centerlines of the three rotation axes intersect at an origin of a centerline-intersecting axis, the centerline-intersecting axis corresponding to one of the three rotation axes. The control point specifying part specifies the origin of the centerline-intersecting axis as the control point.