Abstract:
One example of a lithium ion battery component is a lithium ion battery separator including a planar microporous polymer membrane and a chelating agent bonded to the planar microporous polymer membrane through a linking group. The chelating agent is bonded such that the permanent dipole moment of the chelating agent is oriented perpendicular to the plane of the planar microporous polymer membrane.
Abstract:
In a lithium ion battery, one or more chelating agents may be attached to a microporous polymer separator for placement between a negative electrode and a positive electrode or to a polymer binder material used to construct the negative electrode, the positive electrode, or both. The chelating agents may comprise, for example, at least one of a crown ether, a crown ether, a podand, a lariat ether, a calixarene, a calixcrown, or mixtures thereof. The chelating agents can help improve the useful life of the lithium ion battery by complexing with unwanted metal cations that may become present in the battery's electrolyte solution while, at the same time, not significantly interfering with the movement of lithium ions between the negative and positive electrodes.
Abstract:
A method for making a fibrous layer for fuel cell applications includes a step of combining a perfuorocyclobutyl-containing resin with a water soluble carrier resin to form a resinous mixture. The resinous mixture is then shaped to form a shaped resinous mixture. The shaped resinous mixture includes perfuorocyclobutyl-containing structures within the carrier resin. The shaped resinous mixture is contacted (i.e., washed) with water to separate the perfuorocyclobutyl-containing structures from the carrier resin. Optional protogenic groups and then a catalyst are added to the perfuorocyclobutyl-containing structures.
Abstract:
A method of making a metal organic framework (MOF)-polymer composite material includes forming a homogeneous solution comprising a solvent, a metal salt, a polymer which is soluble in the solvent, and a reactant which can be synthesized to provide an organic linker during formation of a MOF structure, synthesizing the homogeneous solution to crystallize a MOF structure in the homogenous solution to yield the MOF structure distributed in a remainder solution, applying an antisolvent to the remainder solution with the MOF structure distributed in the remainder solution to form a polymer-rich phase, where the MOF structure is integrated into the polymer matrix during forming of the polymer matrix to produce a MOF-polymer composite material. The MOF-polymer composite material can be formed on a substrate to produce a MOF structured object, which can be a membrane, film, or other object.
Abstract:
A thermal interface member configured to be disposed between a heat sink and a heat-releasing device includes a thermal interface member. The thermal interface member has a thermally conductive, cure-in-place, polymer foam pad configured to maintain uniform contact with each of the heat sink and the heat-releasing device. The thermal interface member is additionally configured to absorb the thermal energy released by the heat-releasing device and direct the released thermal energy to the heat sink. The polymer foam pad has a matrix structure including at least one of anisotropic and isotropic thermally conductive anisotropic filler material, and is characterized by foam material density below 0.5 g/cm3.
Abstract:
Electrochemical cells that cycle lithium ions and methods for suppressing or minimizing dendrite formation are provided. The electrochemical cells include a positive electrode, a negative electrode, and a separator disposed therebetween. At least one transition metal ion-trapping moiety, including one or more polymers functionalized with one or more trapping groups, may be included within the electrochemical cell as a coating, pore filler, substitute pendant group, or binder. The one or more trapping groups may be selected from the group consisting of: crown ethers, siderophores, bactins, ortho-phenanthroline, iminodiacetic acid dilithium salt, oxalates malonates, fumarates, succinates, itaconates, phosphonates, and combinations thereof, and may bind to metal ions found within the electrochemical cell to minimize or suppress formation of dendrite protrusions on the negative electrode.
Abstract:
Methods of scavenging acid in a lithium-ion electrochemical cell are provided. An electrolyte solution that contains an acid or is capable of forming the acid is contacted with a polymer comprising a nitrogen-containing acid-trapping moiety selected from the group consisting of: an amine group, a pyridine group, and combinations thereof. The nitrogen-containing acid-trapping moiety scavenges acidic species present in the electrolyte solution by participating in a Lewis acid-base neutralization reaction. The electrolyte solution comprises a lithium salt and one or more solvents and is contained in the electrochemical cell that further comprises a first electrode, a second electrode having an opposite polarity from the first electrode, and a porous separator. Lithium ions can be cycled through the separator and electrolyte solution from the first electrode to the second electrode, where acid generated during the cycling is scavenged by the polymer comprising a nitrogen-containing acid-trapping moiety.
Abstract:
Methods and devices for providing an even distribution of waste heat in a vehicular battery pack, including a battery pack, a cold plate, a coolant reservoir, a support structure between the battery pack and the coolant reservoir, and a conformable thermal interface material for filling the space between cells of the battery pack and the coolant reservoir so as to provide thermal contact between the cells and the coolant reservoir for distributing the waste heat. In addition, methods and devices for providing an even distribution of waste heat and structural support in any heat source to heat sink for applications such as small devices such as computer motors.
Abstract:
A lithium ion battery includes a positive and a negative electrode, and a nanoporous or microporous polymer separator soaked in electrolyte solution and disposed between the electrodes. At least two different chelating agents are included and selected to complex with: i) two or more different transition metal ions; ii) a transition metal ion in two or more different oxidation states; or iii) both i) and ii). The at least two different selected chelating agents are to complex with transition metal ions in a manner sufficient to not affect movement of lithium ions across the separator during operation of the battery. The chelating agents are: dissolved or dispersed in the electrolyte solution; grafted onto the polymer of the separator; attached to the binder material of the negative and/or positive electrode; disposed within pores of the separator; coated on a surface of the separator; and/or coated on a surface of an electrode.
Abstract:
A lithium ion battery includes positive and negative electrodes, and a nanoporous or microporous polymer separator soaked in an electrolyte solution, between the positive electrode and the negative electrode. Chelating agent(s) are included to complex with transition metal ions while not affecting movement of lithium ions across the separator during operation of the lithium ion battery. The chelating agents are: dissolved in the electrolyte solution; grafted onto the polymer of the separator; attached to the binder material of the negative and/or positive electrode; coated on a surface of the separator; and/or coated on a surface of the negative and/or positive electrode. The chelating agents are selected from: ion traps in molecular form selected from polyamines, thiols and alkali metal salts of organic acids; polymers functionalized with alkali metal salts of organic acids; polymers functionalized with nitrogen-containing functional groups; and polymers functionalized with two or more functional groups.