Abstract:
Devices, methods and systems are provided for monitoring an aircraft. One exemplary method involves a processing system at a ground location obtaining first information associated with a first region identified by a detection system onboard the aircraft, obtaining second information associated with a second region identified by an external system coupled to the processing system, and displaying a flight tracking image associated with the aircraft that includes a first graphical representation of the first region and a second graphical representation of the second region. The method continues by capturing at least a portion of the flight tracking image displayed on a display device at the ground location and transmitting the captured flight tracking image to the aircraft for subsequent presentation on an onboard display device.
Abstract:
Systems and methods for adaptively steering radar beam patterns for coverage during aircraft turns. The radar sensor system is mechanically or electrically steered to alter the radar sensor's beam pattern in order to adapt the radar sensor's field of view (FOV) to cover the area of anticipated aircraft wingtip trajectory. The anticipated trajectory is derived, for example, from the aircraft groundspeed, acceleration, heading, turn rate, tiller position, attitude, taxi clearance, etc.
Abstract:
A server system for an aircraft is provided. In one embodiment, the server system comprises an aircraft server unit that is operative to receive data from one or more data sources, and a software development kit (SDK) application server in operative communication with the aircraft server unit. The SDK application server comprises one or more processing core modules configured to process the data from the one or more data sources, and one or more application modules including one or more aircraft tablet device logic modules that are configured to respectively execute one or more aircraft tablet device applications. The data processed by the one or more processing core modules is separated from the one or more aircraft tablet device logic modules. The SDK application server is configured to communicate with one or more external portable computing devices.
Abstract:
A server system for an aircraft is provided. In one embodiment, the server system comprises an aircraft server unit that is operative to receive data from one or more data sources, and a software development kit (SDK) application server in operative communication with the aircraft server unit. The SDK application server comprises one or more processing core modules configured to process the data from the one or more data sources, and one or more application modules including one or more aircraft tablet device logic modules that are configured to respectively execute one or more aircraft tablet device applications. The data processed by the one or more processing core modules is separated from the one or more aircraft tablet device logic modules. The SDK application server is configured to communicate with one or more external portable computing devices.
Abstract:
A system and method for monitoring a communication channel and displaying information. A signal is received via the communication channel and signal information is extracted from the signal. The signal information is monitored for a predetermined indicator. Selected information is extracted from the signal information when the predetermined indicator is detected in the signal information and then displayed.
Abstract:
A method is provided for displaying information on a display device of an aircraft. The method comprises receiving data indicating a point selected from a trajectory of a flight path; determining an estimated time of arrival minimum and an estimated time of arrival maximum based on the point; and displaying in a dialogue box associated with the trajectory of the flight path the estimated time of arrival minimum and the estimated time of arrival maximum for the point.
Abstract:
A method for managing a flight briefing data system is provided. The method establishes, by a central computer system, a first communication connection with an electronic device and a second communication connection with an aircraft onboard avionics unit; transmits, by the central computer system, flight briefing data via the first communication connection and the second communication connection, wherein the flight briefing data comprises at least a plurality of Notices to Airmen (NOTAMs) associated with a pending flight; receives, by the central computer system, altered flight briefing data; and synchronizes the central computer system, the electronic device, and the aircraft onboard avionics unit, by transmitting the altered flight briefing data via the first communication connection and the second communication connection.
Abstract:
Systems and methods for providing improved situational awareness for an aircraft while taxiing. An exemplary method generates reflectivity data based on an associated emission at a transceiver located on an aircraft. At a processor, targets are determined if a portion of the generated reflectivity data is greater than a predefined threshold. Then, the analyzed targets are determined as to whether they are within a dynamically defined three-dimensional envelope. The envelope is based on wingtip light module speed and trajectory. On a display device, an indication of the nearest target is presented at the associated range to the nearest target.
Abstract:
Aircraft systems and methods for detecting non-compliant pilot action are provided. The method comprises analyzing an outbound communication from an aircraft to recognize a word or phrase corresponding to a parameter associated with a prior request for pilot action. If the word or phrase is recognized, the method further comprises storing data corresponding to the outbound communication in a data storage device. The stored data and pilot action taken are compared to determine if there is a discrepancy between the pilot action and the stored data. A discrepancy alert is outputted if the discrepancy is determined to exist. A predetermined time interval is timed from the outbound communication. A timeout alert is outputted at a timeout of the predetermined time interval unless the requested pilot action is taken within the predetermined time interval.
Abstract:
A method for providing a display to a flight crew of an aircraft includes receiving a required time of arrival (RTA) control instruction for arriving at a particular waypoint at a particular time, calculating an initial required aircraft speed at which the aircraft is required to fly in order to arrive at the particular waypoint at the particular time, and providing a flight display comprising a speed tape. The method further includes receiving an input accepting the RTA control instruction and calculating an updated required aircraft speed at which the aircraft is required to fly in order to arrive at the particular waypoint at the particular time. Still further, the method includes updating the flight display comprising displaying the updated RTA target speed on the speed tape using a second symbology that is different from the first symbology and discontinuing the display of the first symbology.