摘要:
An engineered strain of the oleaginous yeast Yarrowia lipolytica capable of producing greater than 5.6% docosahexaenoic acid acid (DHA, an w-3 polyunsaturated fatty acid) in the total oil fraction is described. This strain comprises various chimeric genes expressing heterologous desaturases, elongases and acyltransferases and optionally comprises various native desaturase and acyltransferase knockouts to enable synthesis and high accumulation of DHA. Production host cells are claimed, as are methods for producing DHA within said host cells.
摘要:
Engineered strains of the oleaginous yeast Yarrowia lipolytica capable of producing greater than 25% eicosapentaenoic acid (EPA, an ω-3 polyunsaturated fatty acid) in the total oil fraction are described. These strains comprise various chimeric genes expressing heterologous desaturases, elongases and acyltransferases and optionally comprise various native desaturase and acyltransferase knockouts to enable synthesis and high accumulation of EPA. Production host cells are claimed, as are methods for producing EPA within said host cells.
摘要:
Engineered strains of the oleaginous yeast Yarrowia lipolytica capable of producing greater than 10% arachidonic acid (ARA, an ω-6 polyunsaturated fatty acid) in the total oil fraction are described. These strains comprise various chimeric genes expressing heterologous desaturases, elongases and acyltransferases, and optionally comprise various native desaturase and acyltransferase knockouts to enable synthesis and high accumulation of ARA. Production host cells are claimed, as are methods for producing ARA within said host cells.
摘要:
Acyltransferases are provided, suitable for use in the manufacture of microbial oils enriched in omega fatty acids in oleaginous yeast (e.g., Yarrowia lipolytica). Specifically, genes encoding diacylglycerol acyltransferase (DGAT1) have been isolated from Y. lipolytica and Mortierella alpina. These genes encode enzymes that participate in the terminal step in oil biosynthesis in yeast. Each is expected to play a key role in altering the quantity of polyunsaturated fatty acids produced in oils of oleaginous yeasts.
摘要:
Acyltransferases are provided, suitable for use in the manufacture of microbial oils enriched in omega fatty acids in oleaginous yeast (e.g., Yarrowia lipolytica). Specifically, genes encoding diacylglycerol acyltransferase (DGAT1) have been isolated from Y. lipolytica and Mortierella alpina. These genes encode enzymes that participate in the terminal step in oil biosynthesis in yeast. Each is expected to play a key role in altering the quantity of polyunsaturated fatty acids produced in oils of oleaginous yeasts.
摘要:
Methods to increase the percent of polyunsaturated fatty acids (PUFAs) within the total lipids and oils of PUFA-producing oleaginous organisms are provided herein, by regulating the activity of specific acyltransferases. Specifically, since oil biosynthesis is expected to compete with polyunsaturation during oleaginy, it is possible to reduce or inactivate the activity of an organism's DAG ATs (e.g., phospholipid:diacylglycerol acyltransferase (PDAT) and/or diacylglycerol acyltransferase 1 (DGAT1) and/or diacylglycerol acyltransferase 2 (DGAT2)) to thereby reduce the overall rate of oil biosynthesis while concomitantly increasing the percent of PUFAs that are incorporated into the lipid and oil fractions. The teachings herein will thereby enable one to engineer a wide variety of oleaginous organisms to produce oils with very specific fatty acid compositions.
摘要:
The present invention relates to fungal Δ12 fatty acid desaturases that are able to catalyze the conversion of oleic acid to linoleic acid (LA; 18:2). Nucleic acid sequences encoding the desaturases, nucleic acid sequences which hybridize thereto, DNA constructs comprising the desaturase genes, and recombinant host microorganisms expressing increased levels of the desaturases are described. Methods of increasing production of specific ω-3 and ω-6 fatty acids by over-expression of the Δ12 fatty acid desaturases are also described herein.
摘要:
Mutant delta-5 desaturases, having the ability to convert dihomo-gamma-linolenic acid [DGLA; 20:3 omega-6] to arachidonic acid [ARA; 20:4 omega-6] and/or eicosatetraenoic acid [ETA; 20:4 omega-3] to eicosapentaenoic acid [EPA; 20:5 omega-3] and possessing at least one mutation within the HPGG (SEQ ID NO:7) motif of the cytochome b5-like domain and at least one mutation within the HDASH (SEQ ID NO:8) motif are disclosed. Isolated nucleic acid fragments and recombinant constructs comprising such fragments encoding delta-5 desaturases, along with a method of making long chain polyunsaturated fatty acids [“PUFAs”], are also disclosed.
摘要翻译:具有将dihomo-γ-亚麻酸转化的能力的变体delta-5去饱和酶[DGLA; 20:3ω-6]花生四烯酸[ARA; 20:4ω-6]和/或二十碳四烯酸[ETA; 20:4ω-3]至二十碳五烯酸[EPA; 20:5ω-3],并且在细胞色素b5样结构域的HPGG(SEQ ID NO:7)基序和HDASH(SEQ ID NO:8)基序内的至少一个突变中具有至少一个突变。 还公开了分离的核酸片段和包含编码Δ-5去饱和酶的片段的重组构建物,以及制备长链多不饱和脂肪酸[“PUFA”]的方法。
摘要:
Engineered strains of the oleaginous yeast Yarrowia lipolytica capable of producing greater than 25% eicosapentaenoic acid (EPA, an ω-3 polyunsaturated fatty acid) in the total oil fraction are described. These strains comprise various chimeric genes expressing heterologous desaturases, elongases and acyltransferases and optionally comprise various native desaturase and acyltransferase knockouts to enable synthesis and high accumulation of EPA. Production host cells are claimed, as are methods for producing EPA within said host cells.
摘要:
An engineered strain of the oleaginous yeast Yarrowia lipolytica capable of producing greater than 5.6% docosahexaenoic acid acid (DHA, an w-3 polyunsaturated fatty acid) in the total oil fraction is described. This strain comprises various chimeric genes expressing heterologous desaturases, elongases and acyltransferases and optionally comprises various native desaturase and acyltransferase knockouts to enable synthesis and high accumulation of DHA. Production host cells are claimed, as are methods for producing DHA within said host cells.