Abstract:
A semiconductor fabrication method for producing dielectrically isolated silicon regions wherein high conductivity regions surrounding device regions to be electrically isolated are produced in a silicon body, the high conductivity regions anodically etched in a solution to selectively produce regions of porous silicon, the body exposed to an oxidizing environment while heated to an elevated temperature to oxidize the resultant porous silicon regions.
Abstract:
AUTODOPING IS MINIMIZED DURING THE GROWTH OF AN EPITAXIAL LAYER OF A SEMICONDUCTOR SUBSTRATE BY USING A GASEOUS REACTION MIXTURE THAT DEPOSITS THE INITIAL CAPPING LAYER AT A RELATIVELY SLOW DEPOSITION RATE. THE REACTION MIXTURE CONTAINS A RELATIVELY MINOR PORTION OF A SEMICONDUCTOR COMPOUND ALONG WITH THE CARRIER GAS. SUBSEQUENTLY, A SECOND GASEOUS REACTION MIXTURE CONTAINING A GREATER PORTION OF A COMPOUND OF A SEMICONDUCTOR MATERIAL IS USED TO COMPLETE THE DEPOSITION OF THE EPITXIAL LAYER. THIS IS DONE MERELY TO REDUCE THE TOTAL GROWTH CYCLE.