DEVICE AND A METHOD FOR IMAGING OF MICROSCOPIC OBJECTS

    公开(公告)号:US20220197003A1

    公开(公告)日:2022-06-23

    申请号:US17555792

    申请日:2021-12-20

    Applicant: IMEC VZW

    Abstract: According to an aspect of the present inventive concept there is provided a device for imaging of a microscopic object, the device comprising: an array of light sensitive areas sensitive to detect light spanning a wavelength range of at least 400-1200 nm; at least one light source comprising at least a first point of operation in which the at least one light source is configured to generate visible light, and a second point of operation in which the at least one light source is configured to generate infrared light, and being arranged to illuminate the microscopic object such that light is scattered by the microscopic object; wherein the array of light sensitive areas is configured to detect an interference pattern formed between the scattered light and non-scattered light; the device being configured to be set in a selected point of operation from the at least first and second points of operation, for detecting the interference pattern for imaging the microscopic object at a wavelength defined by the selected point of operation.

    IMAGING DEVICE AND METHOD FOR HOLOGRAPHIC IMAGING OF SAMPLES

    公开(公告)号:US20230176390A1

    公开(公告)日:2023-06-08

    申请号:US18071750

    申请日:2022-11-30

    Applicant: IMEC VZW

    Abstract: Embodiments of the present disclosure provide an imaging device for holographic imaging of a sample, the imaging device comprising a light source generating a light beam, a beam splitter splitting the light beam into an object beam along an object beam path and a reference beam along a reference beam path, and a detector. The imaging device defines a sample position. The object beam is propagated through the sample position, and the detector is arranged to prevent non-scattered object light, passing through the sample position without being scattered by the sample, from being incident onto the detector. The reference beam is propagated through the sample position, and the detector is arranged so that non-scattered reference light, passing through the sample position without being scattered by the sample, is incident onto the detector. The detector detects an interference pattern formed by scattered object light and the non-scattered reference light.

    DEVICE FOR DETECTING PARTICLES IN AIR

    公开(公告)号:US20210190660A1

    公开(公告)日:2021-06-24

    申请号:US17128093

    申请日:2020-12-19

    Applicant: IMEC VZW

    Abstract: A device for detecting particles in air; said device comprising: a flow channel configured to allow a flow of air comprising particles through the flow channel; a light source configured to illuminate the particles, such that an interference pattern is formed by interference between light being scattered by the particles and non-scattered light from the light source; an image sensor configured to detect incident light, detect the interference pattern, and to acquire a time-sequence of image frames, each image frame comprising a plurality of pixels, each pixel representing a detected intensity of light; and a frame processor configured to filter information in the time-sequence of image frames, wherein said filtering comprises: identifying pixels of interest in the time-sequence of image frames, said pixels of interest picturing an interference pattern potentially representing a particle in the flow of air, and outputting said identified pixels of interest for performing digital holographic reconstruction.

    Holographic wavefront sensing
    4.
    发明申请

    公开(公告)号:US20180143079A1

    公开(公告)日:2018-05-24

    申请号:US15821918

    申请日:2017-11-24

    Applicant: IMEC VZW

    Abstract: According to a first aspect, there is provided a method of holographic wavefront sensing, the method including: receiving a light beam, which has a wavefront to be analyzed, on a transparent, flat substrate, which is provided with a lattice of opaque dots, wherein the substrate is arranged above an image sensor; detecting by the image sensor an interference pattern formed by diffracted light, being scattered by the opaque dots, and undiffracted light of the light beam received by the image sensor; processing the detected interference pattern to digitally reconstruct a representation of a displaced lattice of opaque dots, which would form the interference pattern on the image sensor upon receiving the light with a known wavefront; and comparing the representation of the displaced lattice to a known representation of the lattice of opaque dots on the substrate to determine a representation of the wavefront form of the received light beam.

    A device for illuminating a particle, and a system and a method for particle imaging

    公开(公告)号:US20210364409A1

    公开(公告)日:2021-11-25

    申请号:US16957101

    申请日:2018-12-19

    Applicant: IMEC VZW

    Abstract: A device (110) for illuminating a particle comprises: a light waveguide (112; 412a, 412b; 512a, 512b) arranged on a substrate (114); an output coupler (118) configured to output a light beam (150; 450a, 450b; 550a, 550b) forming a sheet-like shape having a cross-section which has an extension in a first direction being larger than a size of a particle; and a fluidic channel (116; 416; 516) arranged on the substrate (114) for guiding a flow of particles along a longitudinal direction of the fluidic channel (116; 416; 516); wherein the sheet-like shape of the light beam (150; 450a, 450b; 550a, 550b) is arranged within the fluidic channel (116; 416; 516) and the first direction of the cross-section of the light beam (150; 450a, 450b; 550a, 550b) forms an angle to the longitudinal direction of the fluidic channel (116; 416; 516). A system (100) for imaging the particle comprises the device, an array (130; 430a, 430b; 530) of light-detecting elements (132; 432a, 432b; 532); and a lens (120) to converge light towards the array (130; 430a, 430b; 530) such that each light-detecting element (132; 432a, 432b; 532) detects light originating from a corresponding position in the fluidic channel (116; 416; 516).

    LENSFREE METHOD FOR IMAGING BIOLOGICAL SAMPLES IN THREE DIMENSIONS

    公开(公告)号:US20210191316A1

    公开(公告)日:2021-06-24

    申请号:US17128092

    申请日:2020-12-19

    Abstract: A method for three-dimensional imaging of a sample (302) comprises: receiving (102) interference patterns (208) acquired using light-detecting elements (212), wherein each interference pattern (208) is formed by scattered light from the sample (302) and non-scattered light from a light source (206; 306), wherein the interference patterns (208) are acquired using different angles between the sample (302) and the light source (206; 306); performing digital holographic reconstruction applying an iterative algorithm to change a three-dimensional scattering potential of the sample (302) to improve a difference between the received interference patterns (208) and predicted interference patterns based on the three-dimensional scattering potential; wherein the iterative algorithm reduces a sum of a data fidelity term and a non-differentiable regularization term and wherein the iterative algorithm includes a forward-backward splitting method alternating between forward gradient descent (108) on the data fidelity term and backward gradient descent (110) on the regularization term.

    ILLUMINATION SYSTEM, AN IMAGING SYSTEM, AND A METHOD FOR ILLUMINATION OF A SAMPLE IN A CONTAINER

    公开(公告)号:US20220341853A1

    公开(公告)日:2022-10-27

    申请号:US17725871

    申请日:2022-04-21

    Applicant: IMEC VZW

    Abstract: According to an aspect there is provided an illumination system for illumination of a sample in a container, such as a well of a microplate or a petri dish, the container comprising a bottom surface and side walls which together define a volume for receiving the sample, the illumination system comprising: at least one light source; a mask comprising an opaque portion, preventing light from passing through the mask, and an at least partially transparent portion, allowing light to pass through the mask; wherein the illumination system is adapted to be positioned such that the light generated by the light source, passing through the mask, illuminates the sample in the container; and wherein the light source and the mask are configured such that a shape, a size, and a position of a projection of the light passing through the mask, onto a plane of the bottom surface, match a shape, a size, and a position of the bottom surface.

    MULTI-SPECTRAL MICROSCOPIC IMAGING SPANNING THE VISIBLE AND SHORT-WAVE INFRARED RANGE

    公开(公告)号:US20220196475A1

    公开(公告)日:2022-06-23

    申请号:US17555785

    申请日:2021-12-20

    Applicant: IMEC VZW

    Abstract: According to an aspect of the present inventive concept there is provided a device for imaging of a microscopic object, the device comprising: an array of light sensitive areas, each being sensitive to detect light spanning a wavelength range of at least 400-1200 nm; at least one light source configured to generate light at a plurality of wavelengths within the wavelength range, comprising at least one wavelength in a visible part of the wavelength range and at least one wavelength in a short-wave infrared, SWIR, part of the wavelength range, and arranged to illuminate the microscopic object with the generated light such that at least part of the light is scattered by the microscopic object; wherein the device is configured to transmit the scattered light and non-scattered light, from the same light source, to the array of light sensitive areas configured to detect an interference pattern formed between the scattered light and the non-scattered light, for each wavelength.

    DEVICE FOR DETECTING PARTICLES IN AIR

    公开(公告)号:US20210190671A1

    公开(公告)日:2021-06-24

    申请号:US17127980

    申请日:2020-12-18

    Applicant: IMEC VZW

    Abstract: A device for detecting particles in air; said device comprising: a receiver for receiving a flow of air comprising particles; a particle capturing arrangement configured to transfer the particles from the flow of air to a liquid for collection of a set of particles in the liquid; a flow channel configured to pass a flow of the liquid comprising the set of particles through the flow channel; a light source configured to illuminate the set of particles in the flow channel, such that an interference pattern is formed by interference between light being scattered by the set of particles and non-scattered light from the light source; and an image sensor comprising a plurality of photo-sensitive elements configured to detect incident light, the image sensor being configured to detect the interference pattern.

Patent Agency Ranking