OPTICAL PARAMETRIC AMPLIFICATION, OPTICAL PARAMETRIC GENERATION, AND OPTICAL PUMPING IN OPTICAL FIBERS SYSTEMS
    2.
    发明申请
    OPTICAL PARAMETRIC AMPLIFICATION, OPTICAL PARAMETRIC GENERATION, AND OPTICAL PUMPING IN OPTICAL FIBERS SYSTEMS 有权
    光学参数放大,光学参数生成和光纤泵浦系统中的光学泵浦

    公开(公告)号:US20130182724A1

    公开(公告)日:2013-07-18

    申请号:US13714840

    申请日:2012-12-14

    Abstract: Embodiments described herein include a system for producing ultrashort tunable pulses based on ultra broadband OPA or OPG in nonlinear materials. The system parameters such as the nonlinear material, pump wavelengths, quasi-phase matching periods, and temperatures can be selected to utilize the intrinsic dispersion relations for such material to produce bandwidth limited or nearly bandwidth limited pulse compression. Compact high average power sources of short optical pulses tunable in the wavelength range of 1800 to 2100 nm and after frequency doubling in the wavelength range of 900 to 1050 nm can be used as a pump for the ultra broadband OPA or OPG. In certain embodiments, these short pump pulses are obtained from an Er fiber oscillator at about 1550 nm, amplified in Er fiber, Raman-shifted to 1800 to 2100 nm, stretched in a fiber stretcher, and amplified in Tm-doped fiber.

    Abstract translation: 本文描述的实施例包括用于在非线性材料中基于超宽带OPA或OPG产生超短可调脉冲的系统。 可以选择诸如非线性材料,泵浦波长,准相位匹配周期和温度之类的系统参数以利用这种材料的固有色散关系来产生带宽限制或几乎带宽限制的脉冲压缩。 可在1800至2100 nm的波长范围内调谐的短光脉冲的紧凑型高平均电源,在900至1050 nm的波长范围内倍频后可用作超宽带OPA或OPG的泵。 在某些实施例中,这些短泵浦脉冲从大约1550nm的Er光纤振荡器获得,在Er光纤中被放大,拉曼偏移到1800-2100nm,在纤维拉伸器中拉伸,并且在掺杂Tm的光纤中进行放大。

    PULSED LASER SOURCES
    5.
    发明申请
    PULSED LASER SOURCES 有权
    脉冲激光源

    公开(公告)号:US20170063015A1

    公开(公告)日:2017-03-02

    申请号:US15207959

    申请日:2016-07-12

    Abstract: Modelocked fiber laser resonators may be coupled with optical amplifiers. An isolator optionally may separate the resonator from the amplifier. A reflective optical element on one end of the resonator having a relatively low reflectivity may be employed to couple light from the resonator to the amplifier. Enhanced pulse-width control may be provided with concatenated sections of both polarization-maintaining and non-polarization-maintaining fibers. Apodized fiber Bragg gratings and integrated fiber polarizers may also be included in the laser cavity to assist in linearly polarizing the output of the cavity. Very short pulses with a large optical bandwidth may be obtained by matching the dispersion value of the grating to the inverse of the dispersion of the intra-cavity fiber. Frequency comb sources may be constructed from such modelocked fiber oscillators. Low dispersion and an in-line interferometer that provides feedback may assist in controlling the frequency components output from the comb source.

    Abstract translation: 模式锁定光纤激光谐振器可以与光放大器耦合。 隔离器可选地可以将谐振器与放大器分离。 可以采用具有相对低的反射率的谐振器的一端上的反射光学元件来将来自谐振器的光耦合到放大器。 可以提供增强的脉冲宽度控制,其具有两个偏振保持和非偏振保持光纤的级联部分。 变形光纤布拉格光栅和集成光纤偏振器也可以包括在激光腔中,以帮助线性偏振空腔的输出。 可以通过将光栅的色散值与腔内光纤的色散相反来获得具有大的光学带宽的非常短的脉冲。 频率梳源可以由这种锁模光纤振荡器构成。 提供反馈的低色散和在线干涉仪可以有助于控制从梳状源输出的频率分量。

    Optical parametric amplification, optical parametric generation, and optical pumping in optical fibers systems
    7.
    发明授权
    Optical parametric amplification, optical parametric generation, and optical pumping in optical fibers systems 有权
    光学参数放大,光学参数生成和光纤系统中的光泵浦

    公开(公告)号:US09209592B2

    公开(公告)日:2015-12-08

    申请号:US13714840

    申请日:2012-12-14

    Abstract: Embodiments described herein include a system for producing ultrashort tunable pulses based on ultra broadband OPA or OPG in nonlinear materials. The system parameters such as the nonlinear material, pump wavelengths, quasi-phase matching periods, and temperatures can be selected to utilize the intrinsic dispersion relations for such material to produce bandwidth limited or nearly bandwidth limited pulse compression. Compact high average power sources of short optical pulses tunable in the wavelength range of 1800 to 2100 nm and after frequency doubling in the wavelength range of 900 to 1050 nm can be used as a pump for the ultra broadband OPA or OPG. In certain embodiments, these short pump pulses are obtained from an Er fiber oscillator at about 1550 nm, amplified in Er fiber, Raman-shifted to 1800 to 2100 nm, stretched in a fiber stretcher, and amplified in Tm-doped fiber.

    Abstract translation: 本文描述的实施例包括用于在非线性材料中基于超宽带OPA或OPG产生超短可调脉冲的系统。 可以选择诸如非线性材料,泵浦波长,准相位匹配周期和温度之类的系统参数以利用这种材料的固有色散关系来产生带宽限制或几乎带宽限制的脉冲压缩。 可在1800至2100 nm的波长范围内调谐的短光脉冲的紧凑型高平均电源,在900至1050 nm的波长范围内倍频后可用作超宽带OPA或OPG的泵。 在某些实施例中,这些短泵浦脉冲从大约1550nm的Er光纤振荡器获得,在Er光纤中被放大,拉曼偏移到1800-2100nm,在纤维拉伸器中拉伸,并且在掺杂Tm的光纤中进行放大。

    PULSED LASER SOURCES
    9.
    发明申请
    PULSED LASER SOURCES 有权
    脉冲激光源

    公开(公告)号:US20130259070A1

    公开(公告)日:2013-10-03

    申请号:US13907191

    申请日:2013-05-31

    Abstract: Modelocked fiber laser resonators may be coupled with optical amplifiers. An isolator optionally may separate the resonator from the amplifier. A reflective optical element on one end of the resonator having a relatively low reflectivity may be employed to couple light from the resonator to the amplifier. Enhanced pulse-width control may be provided with concatenated sections of both polarization-maintaining and non-polarization-maintaining fibers. Apodized fiber Bragg gratings and integrated fiber polarizers may also be included in the laser cavity to assist in linearly polarizing the output of the cavity. Very short pulses with a large optical bandwidth may be obtained by matching the dispersion value of the grating to the inverse of the dispersion of the intra-cavity fiber. Frequency comb sources may be constructed from such modelocked fiber oscillators. Low dispersion and an in-line interferometer that provides feedback may assist in controlling the frequency components output from the comb source.

    Abstract translation: 模式锁定光纤激光谐振器可以与光放大器耦合。 隔离器可选地可以将谐振器与放大器分离。 可以采用具有相对低的反射率的谐振器的一端上的反射光学元件来将来自谐振器的光耦合到放大器。 可以提供增强的脉冲宽度控制,其具有两个偏振保持和非偏振保持光纤的级联部分。 变形光纤布拉格光栅和集成光纤偏振器也可以包括在激光腔中,以帮助线性偏振空腔的输出。 可以通过将光栅的色散值与腔内光纤的色散相反来获得具有大的光学带宽的非常短的脉冲。 频率梳源可以由这种锁模光纤振荡器构成。 提供反馈的低色散和在线干涉仪可以有助于控制从梳状源输出的频率分量。

Patent Agency Ranking