Abstract:
A method for forming doping regions is disclosed, including providing a substrate, forming a first-type doping material on the substrate and forming a second-type doping material on the substrate, wherein the first-type doping material is separated from the second-type doping material by a gap; forming a covering layer to cover the substrate, the first-type doping material and the second-type doping material; and performing a thermal diffusion process to diffuse the first-type doping material and the second-type doping material into the substrate.
Abstract:
A method for forming doping regions is disclosed, including providing a substrate, forming a first-type doping material on the substrate and forming a second-type doping material on the substrate, wherein the first-type doping material is separated from the second-type doping material by a gap; forming a covering layer to cover the substrate, the first-type doping material and the second-type doping material; and performing a thermal diffusion process to diffuse the first-type doping material and the second-type doping material into the substrate.
Abstract:
An etching composition for a semiconductor wafer is provided, including 0.5-50 wt % base, 10-80 wt % alcohol, 0.01-15 wt % additive and water. A method for etching a semiconductor wafer is also provided. When the etching composition is applied to the entire surface or a partial surface of the semiconductor wafer at 60-200° C., the etching composition reacts on the semiconductor wafer to form a foam that etches the semiconductor wafer and includes a solid, a liquid and a gas. At the same time, the additive forms an oxide mask on the surface of the semiconductor wafer. Therefore, an excellent texture structure is formed on the surface of the semiconductor wafer, and a single surface of the semiconductor wafer is etched.
Abstract:
A pixel structure is provided. The pixel structure includes a substrate and a conductive line electrically connected to the substrate. The ratio of the height to the width of the conductive line is between 0.5 and 6. The pixel structure also includes an electrode electrically connected to the conductive line and a conversion element electrically connected to the conductive lines through the electrode.
Abstract:
A panel to be plated is provided. The panel includes a substrate and an electric field compensation structure. The substrate includes a plurality of units to be plated each including a first pattern to be plated. The electric field compensation structure is disposed on the substrate. The electric field compensation structure includes a second pattern to be plated surrounding at least one of the units to be plated. A ratio of an area of the first pattern to be plated of the units to be plated to an area of the second pattern to be plated of the electric field compensation structure is in a range from 1:0.07 to 1:0.3.