Abstract:
A package is disclosed. In one example, the package comprises a carrier comprising a thermally conductive and electrically insulating layer, a laminate comprising a plurality of connected laminate layers, an electronic component mounted between the carrier and the laminate. An encapsulant is at least partially arranged between the carrier and the laminate and encapsulating at least part of the electronic component.
Abstract:
A semiconductor device module includes an application board, a plurality of semiconductor device packages disposed on the application board, each one of the semiconductor device packages including a semiconductor die, a leadframe including a plurality of leads, the leads including a spring support and a heat dissipation element, and an encapsulant embedding the semiconductor die and first portions of the leads, an external heatsink, and one or more thermally conductive interface layers disposed between the semiconductor device package and the heatsink.
Abstract:
A method for manufacturing a semiconductor panel is disclosed. In one example, the method includes providing a first preformed polymer form. The method further includes arranging multiple semiconductor chips over the first preformed polymer form. The method further includes attaching a second preformed polymer form to the first preformed polymer form, wherein the semiconductor chips are arranged between the attached preformed polymer forms, and wherein the attached preformed polymer forms form the semiconductor panel encapsulating the semiconductor chips.
Abstract:
A power semiconductor module includes a first substrate, wherein the first substrate includes aluminum, a first aluminum oxide layer arranged on the first substrate, a conductive layer arranged on the first aluminum oxide layer, a first semiconductor chip, wherein the first semiconductor chip is arranged on the conductive layer and is electrically connected thereto, and an electrical insulation material enclosing the first semiconductor chip, wherein the first aluminum oxide layer is configured to electrically insulate the first semiconductor chip from the first substrate.
Abstract:
A power module which comprises a semiconductor chip, at least one cooling plate with at least one cooling channel thermally coupled to the semiconductor chip and being configured so that a coolant is guidable through the at least one cooling channel, and an encapsulant encapsulating at least part of the semiconductor chip and part of the at least one cooling channel, wherein at least part of a main surface of the cooling plate forms part of an external surface of the power module.
Abstract:
A cooling apparatus is manufactured by: receiving a discrete module by a first singular part, the discrete module including a semiconductor die encapsulated by a mold compound, a plurality of leads electrically connected to the semiconductor die and protruding out of the mold compound, and a first cooling plate at least partly uncovered by the mold compound; attaching a second singular part to a periphery of the first part to form a housing, the housing surrounding a periphery of the discrete module, the second part having a cutout which exposes the first cooling plate and a sealing structure facing a side of the discrete module with the first cooling plate; and filling the sealing structure with a sealing material which forms a water-tight seal around the periphery of the discrete module at the side of the discrete module with the first cooling plate.
Abstract:
A cooling apparatus includes a plurality of discrete modules and a plastic housing. Each module includes a semiconductor die encapsulated by a mold compound, a plurality of leads electrically connected to the semiconductor die and protruding out of the mold compound and a first cooling plate at least partly uncovered by the mold compound. The plastic housing surrounds the periphery of each module to form a multi-die module. The plastic housing includes a first singular plastic part which receives the modules and a second singular plastic part attached to a periphery of the first plastic part. The second plastic part has cutouts which expose the first cooling plates and a sealing structure containing a sealing material which forms a water-tight seal around the periphery of each module at a side of the modules with the first cooling plates.
Abstract:
In various embodiments, a substrate is provided. The substrate may include: a ceramic carrier having a first side and a second side opposite the first side; a first metal layer disposed over the first side of the ceramic carrier; a second metal layer disposed over the second side of the ceramic carrier; and a cooling structure formed into or over the second metal layer.
Abstract:
A cooling apparatus includes a plurality of discrete modules and a plastic housing. Each module includes a semiconductor die encapsulated by a mold compound, a plurality of leads electrically connected to the semiconductor die and protruding out of the mold compound and a first cooling plate at least partly uncovered by the mold compound. The plastic housing surrounds the periphery of each module to form a multi-die module. The plastic housing includes a first singular plastic part which receives the modules and a second singular plastic part attached to a periphery of the first plastic part. The second plastic part has cutouts which expose the first cooling plates and a sealing structure containing a sealing material which forms a water-tight seal around the periphery of each module at a side of the modules with the first cooling plates.
Abstract:
According to an exemplary embodiment, a power module is provided which comprises a semiconductor chip, a bonding substrate comprising an electrically conductive sheet and an electric insulator sheet which is directly attached to the electrically conductive sheet and which is thermally coupled to the semiconductor chip, and an array of cooling structures directly attached to the electrically conductive sheet and configured for removing heat from the semiconductor chip when interacting with cooling fluid.