Abstract:
Techniques and mechanisms for providing at a packaged device an integrated circuit (IC) chip and a chiplet, wherein memory resources of the chiplet are accessible by a processor core of the IC chip. In an embodiment, a hardware interface of the packaged device includes first conductive contacts at a side of the chiplet, wherein second conductive contacts of the hardware interface are electrically interconnected to the IC chip each via a respective path which is independent of the chiplet. In another embodiment, one or more of the first conductive contacts are configured to deliver power, or communicate a signal, to a device layer of one of the IC chip or the chiplet.
Abstract:
In an embodiment, a processor includes a plurality of cores grouped into a plurality of clusters. The clusters are formed based on a corresponding operating voltage of each core at each of a plurality of frequencies. Each cluster includes a unique set of cores and at least one cluster includes at least two of the cores. The processor also includes a power control unit (PCU) including frequency/voltage control logic, responsive to a frequency change request for a first core of a first cluster, to determine an operating voltage for the first core from a first cluster voltage-frequency (V-F) table associated with the first cluster. The first cluster V-F table uniquely specifies a corresponding operating voltage at each of a plurality of frequencies of operation of the cores of the first cluster. Other embodiments are described and claimed.
Abstract:
The disclosure relates to a radio transceiver, comprising: a precoder configured to precode a data signal for transmission to a plurality of multi-stream terminals based on a plurality of precoding weight matrices; and a processor configured to generate for each terminal in an iterative manner a precoding weight matrix and a transformed channel matrix, wherein the transformed channel matrix indicates a channel gain between the radio transceiver and the respective terminal transformed by a receive filter matrix of the respective terminal, wherein the generation of the precoding weight matrix and the transformed channel matrix in a current iteration is based on the transformed channel matrix generated from a previous iteration.
Abstract:
A cache controller id disclosed, The cache controller includes circuitry to receive a request to access data in a target location of a last level cache of a processor on a processor package, identify an in-field failure in the target location of the last level cache, perform, in response to the identification of the in-field failure, an in-field repair, including circuitry to write in-field repair information to a non-volatile memory on the processor package and external to the processor, the non-volatile memory including circuitry to store in-field repair information. Systems and methods are also disclosed.
Abstract:
A cache controller id disclosed, The cache controller includes circuitry to receive a request to access data in a target location of a last level cache of a processor on a processor package, identify an in-field failure in the target location of the last level cache, perform, in response to the identification of the in-field failure, an in-field repair, including circuitry to write in-field repair information to a non-volatile memory on the processor package and external to the processor, the non-volatile memory including circuitry to store in-field repair information. Systems and methods are also disclosed.
Abstract:
In an embodiment, a processor includes a plurality of cores each to independently execute instructions, a cache memory including a plurality of portions distributed across a die of the processor, a plurality of sleep circuits each coupled to one of the portions of the cache memory, and at least one sleep control logic coupled to the cache memory portions to dynamically determine a sleep setting independently for each of the sleep circuits and to enable the corresponding sleep circuit to maintain the corresponding cache memory portion at a retention voltage. Other embodiments are described and claimed.
Abstract:
In various aspects, devices and methods for performing a handover in a MIMO system are described herein. According to at least one aspect, a wireless communication device is described to include one or more receivers that measures beams of a neighbor cell in response to a command of a MIMO communication system. In some aspects, the wireless communication device further includes one or more transmitters that reports information of the beams based on the measured beams to the massive MIMO communication system. The information is, in at least one aspect, incorporated in a Beam Specific-Neighbor Cell Relation (BS-NCR).
Abstract:
Techniques and mechanisms for providing at a packaged device an integrated circuit (IC) chip and a chiplet, wherein memory resources of the chiplet are accessible by a processor core of the IC chip. In an embodiment, a hardware interface of the packaged device includes first conductive contacts at a side of the chiplet, wherein second conductive contacts of the hardware interface are electrically interconnected to the IC chip each via a respective path which is independent of the chiplet. In another embodiment, one or more of the first conductive contacts are configured to deliver power, or communicate a signal, to a device layer of one of the IC chip or the chiplet.
Abstract:
Embodiments of a Next Generation Node B (gNB) are described herein. The gNB may be configured with logical nodes, including a gNB central unit (gNB-CU) and a gNB distributed unit (gNB-DU). The gNB-CU may comprise a gNB-CU control plane (gNB-CU-CP) for control-plane functionality, and a gNB-CU user plane (gNB-CU-UP) for user-plane functionality. The gNB may initiate an E1 interface setup procedure, a bearer context setup procedure, and a UE context setup procedure to establish a UE context that includes a signaling radio bearer (SRB) and a data radio bearer (DRB) configuration. The UE context setup request message may be configured to include quality-of-service parameters for the DRB configuration.
Abstract:
A centralized RAN architecture that includes lower layer transmission nodes (referred to as distributed units (DUs) herein) that connect to an upper layer RAN node (referred to as a centralized unit (CU) herein). A centralized RAN architecture may include a functional split, between the CU and DU, corresponding to the Packet Data Convergence Protocol (PDCP) and Radio Link Control (RLC) layers. In one embodiment, a CU may store copies of downlink PDCP PDUs that are transmitted to a first DU. The CU may retransmit, to a second DU, those of the PDCP PDUs which were previously transmitted to the source DU but have not been acknowledged as successfully delivered by the source DU.