Abstract:
In one embodiment, a multi-core processor includes multiple cores and an uncore, where the uncore includes various logic units including a cache memory, a router, and a power control unit (PCU). The PCU can clock gate at least one of the logic units and the cache memory when the multi-core processor is in a low power state to thus reduce dynamic power consumption.
Abstract:
In one embodiment, the present invention includes a processor that has an on-die storage such as a static random access memory to store an architectural state of one or more threads that are swapped out of architectural state storage of the processor on entry to a system management mode (SMM). In this way communication of this state information to a system management memory can be avoided, reducing latency associated with entry into SMM. Embodiments may also enable the processor to update a status of executing agents that are either in a long instruction flow or in a system management interrupt (SMI) blocked state, in order to provide an indication to agents inside the SMM. Other embodiments are described and claimed.
Abstract:
In one embodiment, the present invention includes a processor that has an on-die storage such as a static random access memory to store an architectural state of one or more threads that are swapped out of architectural state storage of the processor on entry to a system management mode (SMM). In this way communication of this state information to a system management memory can be avoided, reducing latency associated with entry into SMM. Embodiments may also enable the processor to update a status of executing agents that are either in a long instruction flow or in a system management interrupt (SMI) blocked state, in order to provide an indication to agents inside the SMM. Other embodiments are described and claimed.
Abstract:
In an embodiment, a processor includes a plurality of cores grouped into a plurality of clusters. The clusters are formed based on a corresponding operating voltage of each core at each of a plurality of frequencies. Each cluster includes a unique set of cores and at least one cluster includes at least two of the cores. The processor also includes a power control unit (PCU) including frequency/voltage control logic, responsive to a frequency change request for a first core of a first cluster, to determine an operating voltage for the first core from a first cluster voltage-frequency (V-F) table associated with the first cluster. The first cluster V-F table uniquely specifies a corresponding operating voltage at each of a plurality of frequencies of operation of the cores of the first cluster. Other embodiments are described and claimed.
Abstract:
In one embodiment, a multi-core processor includes multiple cores and an uncore, where the uncore includes various logic units including a cache memory, a router, and a power control unit (PCU). The PCU can clock gate at least one of the logic units and the cache memory when the multi-core processor is in a low power state to thus reduce dynamic power consumption.
Abstract:
In one embodiment, a processor has multiple cores to execute threads. The processor further includes a power control logic to enable entry into a turbo mode based on a comparison between a threshold and value of a counter that stores a count of core power and performance combinations that identify turbo mode requests of at least one of the threads. In this way, turbo mode may be entered at a utilization level of the processor that provides for high power efficiency. Other embodiments are described and claimed.
Abstract:
In one embodiment, the present invention includes a processor that has an on-die storage such as a static random access memory to store an architectural state of one or more threads that are swapped out of architectural state storage of the processor on entry to a system management mode (SMM). In this way communication of this state information to a system management memory can be avoided, reducing latency associated with entry into SMM. Embodiments may also enable the processor to update a status of executing agents that are either in a long instruction flow or in a system management interrupt (SMI) blocked state, in order to provide an indication to agents inside the SMM. Other embodiments are described and claimed.
Abstract:
In one embodiment, the present invention includes a processor that has an on-die storage such as a static random access memory to store an architectural state of one or more threads that are swapped out of architectural state storage of the processor on entry to a system management mode (SMM). In this way communication of this state information to a system management memory can be avoided, reducing latency associated with entry into SMM. Embodiments may also enable the processor to update a status of executing agents that are either in a long instruction flow or in a system management interrupt (SMI) blocked state, in order to provide an indication to agents inside the SMM. Other embodiments are described and claimed.
Abstract:
In one embodiment, a processor has multiple cores to execute threads. The processor further includes a power control logic to enable entry into a turbo mode based on a comparison between a threshold and value of a counter that stores a count of core power and performance combinations that identify turbo mode requests of at least one of the threads. In this way, turbo mode may be entered at a utilization level of the processor that provides for high power efficiency. Other embodiments are described and claimed.