Abstract:
Methods for producing RRAM resistive switching elements having reduced forming voltage include doping to create oxygen deficiencies in the dielectric film. Oxygen deficiencies in a dielectric film promote formation of conductive pathways.
Abstract:
Embodiments of the invention generally relate to nonvolatile memory devices and methods for manufacturing such memory devices. The methods for forming improved memory devices, such as a ReRAM cells, provide optimized, atomic layer deposition (ALD) processes for forming a metal oxide film stack which contains at least one hard metal oxide film (e.g., metal is completely oxidized or substantially oxidized) and at least one soft metal oxide film (e.g., metal is less oxidized than hard metal oxide). The soft metal oxide film is less electrically resistive than the hard metal oxide film since the soft metal oxide film is less oxidized or more metallic than the hard metal oxide film. In one example, the hard metal oxide film is formed by an ALD process utilizing ozone as the oxidizing agent while the soft metal oxide film is formed by another ALD process utilizing water vapor as the oxidizing agent.
Abstract:
Embodiments of the invention include nonvolatile memory elements and memory devices comprising the nonvolatile memory elements. Methods for forming the nonvolatile memory elements are also disclosed. The nonvolatile memory element comprises a first electrode layer, a second electrode layer, and a plurality of layers of an oxide disposed between the first and second electrode layers. One of the oxide layers has linear resistance and substoichiometric composition, and the other oxide layer has bistable resistance and near-stoichiometric composition. Preferably, the sum of the two oxide layer thicknesses is between about 20 Å and about 100 Å, and the oxide layer with bistable resistance has a thickness between about 25% and about 75% of the total thickness. In one embodiment, the oxide layers are formed using reactive sputtering in an atmosphere with controlled flows of argon and oxygen.
Abstract:
Provided are resistive random access memory (ReRAM) cells and methods of fabricating thereof. A stack including a defect source layer, a defect blocking layer, and a defect acceptor layer disposed between the defect source layer and the defect blocking layer may be subjected to annealing. During the annealing, defects are transferred in a controllable manner from the defect source layer to the defect acceptor layer. At the same time, the defects are not transferred into the defect blocking layer thereby creating a lowest concentration zone within the defect acceptor layer. This zone is responsible for resistive switching. The precise control over the size of the zone and the defect concentration within the zone allows substantially improvement of resistive switching characteristics of the ReRAM cell. In some embodiments, the defect source layer includes aluminum oxynitride, the defect blocking layer includes titanium nitride, and the defect acceptor layer includes aluminum oxide.
Abstract:
Provided are resistive random access memory (ReRAM) cells that include thin resistive switching layers. In some embodiments, the resistive switching layers have a thickness of less than about 50 Angstroms and even less than about 30 Angstroms. The resistive switching characteristics of such thin layers are maintained by controlling their compositions and using particular fabrication techniques. Specifically, low oxygen vacancy metal oxides, such as tantalum oxide, may be used. The concentration of oxygen vacancies may be less than 5 atomic percent. In some embodiments, the resistive switching layers also include nitrogen and. For example, compositions of some specific resistive switching layers may be represented by Ta2O5-XNY, where Y
Abstract translation:提供了包括薄电阻开关层的电阻随机存取存储器(ReRAM)单元。 在一些实施例中,电阻式开关层的厚度小于约50埃,甚至小于约30埃。 通过控制它们的组成和使用特定的制造技术来维持这种薄层的电阻开关特性。 具体地,可以使用氧化钽等低氧空位金属氧化物。 氧空位的浓度可以小于5原子%。 在一些实施例中,电阻式开关层还包括氮和。 例如,一些特定电阻开关层的组成可以由Ta 2 O 5-X N Y表示,其中Y <(X-0.01)。 电阻开关层可以使用原子层沉积(ALD)形成。
Abstract:
A nonvolatile memory element is disclosed comprising a first electrode, a near-stoichiometric metal oxide memory layer having bistable resistance, and a second electrode in contact with the near-stoichiometric metal oxide memory layer. At least one electrode is a resistive electrode comprising a sub-stoichiometric transition metal nitride or oxynitride, and has a resistivity between 0.1 and 10 Ωcm. The resistive electrode provides the functionality of an embedded current-limiting resistor and also serves as a source and sink of oxygen vacancies for setting and resetting the resistance state of the metal oxide layer. Novel fabrication methods for the second electrode are also disclosed.
Abstract:
Embodiments of the invention generally relate to nonvolatile memory devices and methods for manufacturing such memory devices. The methods for forming improved memory devices, such as a ReRAM cells, provide optimized, atomic layer deposition (ALD) processes for forming a metal oxide film stack having a metal oxide buffer layer disposed on or over a metal oxide bulk layer. The metal oxide bulk layer contains a metal-rich oxide material and the metal oxide buffer layer contains a metal-poor oxide material. The metal oxide bulk layer is less electrically resistive than the metal oxide buffer layer since the metal oxide bulk layer is less oxidized or more metallic than the metal oxide buffer layer. In one example, the metal oxide bulk layer contains a metal-rich hafnium oxide material and the metal oxide buffer layer contains a metal-poor zirconium oxide material.
Abstract:
Embodiments of the invention generally relate to nonvolatile memory devices, such as a ReRAM cells, and methods for manufacturing such memory devices, which includes optimized, atomic layer deposition (ALD) processes for forming metal oxide film stacks. The metal oxide film stacks contain a metal oxide coupling layer disposed on a metal oxide host layer, each layer having different grain structures/sizes. The interface disposed between the metal oxide layers facilitates oxygen vacancy movement. In many examples, the interface is a misaligned grain interface containing numerous grain boundaries extending parallel to the electrode interfaces, in contrast to the grains in the bulk film extending perpendicular to the electrode interfaces. As a result, oxygen vacancies are trapped and released during switching without significant loss of vacancies. Therefore, the metal oxide film stacks have improved switching performance and reliability during memory cell applications compared to traditional hafnium oxide based stacks of previous memory cells.
Abstract:
Embodiments of the invention include nonvolatile memory elements and memory devices comprising the nonvolatile memory elements. Methods for forming the nonvolatile memory elements are also disclosed. The nonvolatile memory element comprises a first electrode layer, a second electrode layer, and a plurality of layers of an oxide disposed between the first and second electrode layers. One of the oxide layers has linear resistance and substoichiometric composition, and the other oxide layer has bistable resistance and near-stoichiometric composition. Preferably, the sum of the two oxide layer thicknesses is between about 20 Å and about 100 Å, and the oxide layer with bistable resistance has a thickness between about 25% and about 75% of the total thickness. In one embodiment, the oxide layers are formed using reactive sputtering in an atmosphere with controlled flows of argon and oxygen.
Abstract:
Embodiments of the invention generally relate to nonvolatile memory devices and methods for manufacturing such memory devices. The methods for forming improved memory devices, such as a ReRAM cells, provide optimized, atomic layer deposition (ALD) processes for forming a metal oxide film stack which contains at least one hard metal oxide film (e.g., metal is completely oxidized or substantially oxidized) and at least one soft metal oxide film (e.g., metal is less oxidized than hard metal oxide). The soft metal oxide film is less electrically resistive than the hard metal oxide film since the soft metal oxide film is less oxidized or more metallic than the hard metal oxide film. In one example, the hard metal oxide film is formed by an ALD process utilizing ozone as the oxidizing agent while the soft metal oxide film is formed by another ALD process utilizing water vapor as the oxidizing agent.