摘要:
An extreme ultra-violet lithographic apparatus for imaging a pattern onto a substrate includes a radiation system constructed and arranged to provide a beam of an extreme ultra-violet radiation, and an absorber arranged in the beam and constructed and arranged to absorb at least a portion of the radiation beam. The absorber has a volume configured to accommodate a flow of an absorbing gas. The flow is directed in a transverse direction with respect to the beam. The absorber includes a structure having an extreme ultra-violet radiation-transmissive beam entry area and an extreme ultra-violet radiation-transmissive beam exit area. The apparatus also includes a gas inlet actuator array configured to inject the gas into the volume and a gas outlet actuator array arranged to evacuate the gas from the volume.
摘要:
An extreme ultra-violet lithographic apparatus for imaging a pattern onto a substrate includes a radiation system constructed and arranged to provide a beam of an extreme ultra-violet radiation, and an absorber arranged in the beam and constructed and arranged to absorb at least a portion of the radiation beam. The absorber has a volume configured to accommodate a flow of an absorbing gas. The flow is directed in a transverse direction with respect to the beam. The absorber includes a structure having an extreme ultra-violet radiation-transmissive beam entry area and an extreme ultra-violet radiation-transmissive beam exit area. The apparatus also includes a gas inlet actuator array configured to inject the gas into the volume and a gas outlet actuator array arranged to evacuate the gas from the volume.
摘要:
A lithographic apparatus for patterning a beam of radiation and projecting it onto a substrate, comprising at least two spectral purity filters configured to reduce the intensity of radiation in the beam of radiation in at least one undesirable range of radiation wavelength, wherein the two spectral purity filters are provided with different radiation filtering structures from each other.
摘要:
A lithographic apparatus for patterning a beam of radiation and projecting it onto a substrate, comprising at least two spectral purity filters configured to reduce the intensity of radiation in the beam of radiation in at least one undesirable range of radiation wavelength, wherein the two spectral purity filters are provided with different radiation filtering structures from each other.
摘要:
A radiation source having a fuel stream generator (110) that generates and directs a fuel stream (102) along a trajectory towards a plasma formation location (104). A pre-pulse laser radiation assembly directs a first beam of laser radiation (100) at the fuel stream at the plasma formation location to generate a modified fuel target (106). A main pulse laser radiation assembly directs a second beam of laser radiation (108) at the modified fuel target at the plasma formation location to generate a radiation generating plasma (117). A collector (122) collects the radiation and directs it along an optical axis (105) of the radiation source. The first beam of laser radiation being directed toward the fuel stream substantially along the optical axis.
摘要:
A module for producing extreme ultraviolet radiation includes a supply configured to supply droplets of an ignition material to a predetermined target ignition position and a laser arranged to be focused on the predetermined target ignition position and to produce a plasma by hitting such a droplet which is located at the predetermined target ignition position in order to change the droplet into an extreme ultraviolet producing plasma. Also, the module includes a collector mirror having a mirror surface constructed and arranged to reflect the radiation in order to focus the radiation on a focal point. A fluid supply is constructed and arranged to form a gas flow flowing away from the mirror surface in a direction transverse with respect to the mirror surface in order to mitigate particle debris produced by the plasma.
摘要:
A radiation source having a fuel stream generator (110) that generates and directs a fuel stream (102) along a trajectory towards a plasma formation location (104). A pre-pulse laser radiation assembly directs a first beam of laser radiation (100) at the fuel stream at the plasma formation location to generate a modified fuel target (106). A main pulse laser radiation assembly directs a second beam of laser radiation (108) at the modified fuel target at the plasma formation location to generate a radiation generating plasma (117). A collector (122) collects the radiation and directs it along an optical axis (105) of the radiation source. The first beam of laser radiation being directed toward the fuel stream substantially along the optical axis.
摘要:
A module for producing extreme ultraviolet radiation includes a supply configured to supply droplets of an ignition material to a predetermined target ignition position and a laser arranged to be focused on the predetermined target ignition position and to produce a plasma by hitting such a droplet which is located at the predetermined target ignition position in order to change the droplet into an extreme ultraviolet producing plasma. Also, the module includes a collector mirror having a mirror surface constructed and arranged to reflect the radiation in order to focus the radiation on a focal point. A fluid supply is constructed and arranged to form a gas flow flowing away from the mirror surface in a direction transverse with respect to the mirror surface in order to mitigate particle debris produced by the plasma.
摘要:
In a lithographic apparatus, an illumination mode is set using a field mirror comprising a plurality of movable facets to direct radiation to selectable positions on a pupil facet mirror. In the event that a field facet mirror is defective and cannot be set to a desired position, another of the movable facet mirrors is set to a corrective position, different than its desired position, to at least partially ameliorate a deleterious effect of the defective facet mirror.
摘要:
In a lithographic apparatus, an illumination mode is set using a field mirror that includes a plurality of movable facets to direct radiation to selectable positions on a pupil facet mirror. A base illumination mode is selected from a set of predetermined illumination modes and the movable facets are set to effect that mode. In order to adjust an imaging parameter, a fraction of the movable facets are set to different positions. The determination of which facets to set to different positions is based on summing the effects of setting each facet to a different position.