Abstract:
A thermostat for a building space includes an electronic display, a frame, a touch sensitive interface, and a processing circuit. The touch-sensitive interface has a first portion that overlays the electronic display and a second portion that overlays the frame. The touch-sensitive interface is configured to receive touch-based input via both the first portion and the second portion. The processing circuit is configured to define one or more locations within the second portion that correspond to touch-sensitive buttons. The locations of the touch-sensitive buttons are customizable and can be changed by a user. The thermostat further including at least one of a sticker and a skin that covers at least part of the second portion and visually marks the locations of the touch-sensitive buttons.
Abstract:
A thermostat for a building space includes a network communication module and a processing circuit. The network communication module is communicatively coupled to at least one of one or more social media servers and one or more calendar servers. The processing circuit is configured to receive at least one of social media activity, social media events, and calendar events associated with a user via the network communication module. The processing circuit is further configured to determine an expected occupancy of the building based on at least one of the social media events and the calendar events. The processing circuit is further configured to adjust a setpoint of the thermostat based on at least one of the expected occupancy and the social media activity.
Abstract:
A residential HVAC system includes, a compressor, and an outdoor unit controller in communication with the compressor. The outdoor unit controller is configured to receive an indoor ambient temperature and a temperature set point. The outdoor unit controller is further configured to determine an outdoor ambient temperature, and to determine an operating value for the compressor based on a percentage of a delta between a minimum operating value of the compressor and a maximum operating value of the compressor, plus the minimum operating value. The minimum operating value and the maximum operating value are based on the determined outdoor ambient temperature. The percentage of the delta is based on a predefined temperature differential multiplier and one or more time dependent multipliers. The outdoor unit controller is further configured to modify the current operating value of the compressor with the determined operating value.
Abstract:
A thermostat for a building space includes a communications interface, an electronic display, and a processing circuit. The communications interface is configured to receive service provider information via a network connection. The electronic display includes a user interface configured to display the service provider information. The processing circuit is configured to determine when to display the service provider information on the electronic display by monitoring thermostat events.
Abstract:
A thermostat for a building space. The thermostat includes a near field communications module and a processing circuit. The near field communications module is configured to communicate with a user device via near field communication. The processing circuit is configured to send data to the user device via the near field communications module. The processing circuit is further configured to receive data from the user device via the near field communication module and process the received data to identify the user or a user type.
Abstract:
A thermostat for a building space includes a network communication module and a processing circuit. The network communication module is communicatively coupled to at least one of one or more social media servers and one or more calendar servers. The processing circuit is configured to receive at least one of social media activity, social media events, and calendar events associated with a user via the network communication module. The processing circuit is further configured to determine an expected occupancy of the building based on at least one of the social media events and the calendar events. The processing circuit is further configured to adjust a setpoint of the thermostat based on at least one of the expected occupancy and the social media activity.
Abstract:
A thermostat includes a memory configured to store operating conditions for previously run conditioning events. The thermostat further includes a controller configured to receive first temperature data from a first temperature sensor indicative of a current indoor ambient temperature inside; receive second temperature data from a second temperature sensor indicative of a current outdoor ambient temperature outside; receive a temperature setpoint for a desired indoor ambient temperature of the building; determine a severity of a call for conditioning based on at least one of the current indoor ambient temperature, the current outdoor ambient temperature, and the temperature setpoint; and operate the multi-stage HVAC system in one of the plurality of stages for a current conditioning event based on the severity of the call for conditioning and the operating conditions for a similar previously run conditioning event to drive the current indoor ambient temperature towards the temperature setpoint.
Abstract:
A thermostat for a building space. The thermostat includes a user interface and a processing circuit. The user interface is configured to serve notifications to a user and receive input from the user. The communications interface is configured to perform bidirectional data communications with HVAC equipment controlled by the thermostat. The communications interface is configured to receive performance information for the HVAC equipment. The processing circuit is configured to provide control signals to the HVAC equipment to achieve a setpoint for the building space. The processing circuit is further configured to evaluate the performance information for the HVAC equipment to determine a recommendation for improving HVAC equipment performance. The processing circuit is further configured to automatically adjust at least one of the setpoint and the control signals provided to the HVAC equipment based on the recommendation for improving HVAC equipment performance.
Abstract:
A thermostat for a building space includes an electronic display, a frame, a touch sensitive interface, and a processing circuit. The touch-sensitive interface has a first portion that overlays the electronic display and a second portion that overlays the frame. The touch-sensitive interface is configured to receive touch-based input via both the first portion and the second portion. The processing circuit is configured to define one or more locations within the second portion that correspond to touch-sensitive buttons. The locations of the touch-sensitive buttons are customizable and can be changed by a user. The thermostat further including at least one of a sticker and a skin that covers at least part of the second portion and visually marks the locations of the touch-sensitive buttons.
Abstract:
A thermostat for a building space. The thermostat includes a user interface and a processing circuit. The user interface is configured to serve notifications to a user and receive input from the user. The communications interface is configured to perform bidirectional data communications with HVAC equipment controlled by the thermostat. The communications interface is configured to receive performance information for the HVAC equipment. The processing circuit is configured to provide control signals to the HVAC equipment to achieve a setpoint for the building space. The processing circuit is further configured to evaluate the performance information for the HVAC equipment to determine a recommendation for improving HVAC equipment performance. The processing circuit is further configured to automatically adjust at least one of the setpoint and the control signals provided to the HVAC equipment based on the recommendation for improving HVAC equipment performance.