摘要:
Provided is an insulated oxide superconducting cable conductor having a high critical current and a high critical current density. The insulated oxide superconducting cable conductor comprises an elongated former, a plurality of tape-shaped multifilamentary oxide superconducting wires which are wound on the former at a bending strain factor of not more than 0.5%, and a spirally wound tape-shaped insulating material covering the tape-shaped multifilamentary oxide superconducting wires. The tape-shaped multifilamentary superconducting wires are superposed on the former in layers, whereby stabilizing materials of the superposed superconducting wires are in contact with each other. The tape-shaped insulating material consists essentially of a material which is contracted at a thermal contraction rate of at least three times that of the tape-shaped multifilamentary wires by cooling from a temperature of 298 K to that of 77 K. The tape-shaped insulating material can apply a pressure to the superposed multifilamentary superconducting wires toward the former while improving electrical contact between the superposed multifilamentary superconducting wires by cooling in employment. The former can be formed of a flexible tube.
摘要:
Provided is an oxide superconducting conductor consisting of a plurality of metal-covered multifilamentary superconducting wires which are assembled with each other. Bending is applied to the superconducting conductor for improving its critical current density. It is possible to obtain a compact superconducting conductor having higher capacity, since its critical current density is increased by such application of bending.
摘要:
In order to provide a flexible oxide superconducting cable conductor which is reduced in ac loss, tape-shaped multifilamentary superconducting wires covered with a stabilizing metal are spirally wound on a flexible former. Each of the multifilamentary superconducting wires has a plurality of filaments. The filament contains an oxide superconductor. The superconducting wires are preferably wound on the former at a bending strain of not more than 0.3 %. In winding on the former, a prescribed number of tape-shaped multifilamentary superconducting wires are wound on a core member in a side-by-side manner, to form a first layer. Then, an insulating layer is provided on the first layer. This insulating layer can be formed by an insulating tape. A prescribed number of tape-shaped superconducting multifilamentary wires are wound on the insulating layer in a side-by-side manner, to form a second layer. The insulating layer is adapted to reduce ac loss of the conductors. When the former is made of a metal, it is more preferable to provide an insulating layer between the former and the multifilamentary superconducting wires.
摘要:
Provided are an oxide superconducting wire which maintains a high critical current density and has a small current drift with small ac loss when the same carries an alternating current and a method of preparing the same, and a cable conductor which is formed by assembling such oxide superconducting wires. The oxide superconducting wire is a flat-molded stranded wire which is formed by twisting a plurality of metal-coated strands consisting of an oxide superconductor, and is characterized in that the flat-molded stranded wire has a rectangular sectional shape, and a section of each strand forming the flat-molded stranded wire has an aspect ratio (W1/T1) of at least 2. The method of preparing this oxide superconducting wire comprises the steps of preparing a stranded wire by twisting a plurality of strands, each of which is formed by metal-coating an oxide superconductor or raw material powder therefor, flat-molding the prepared stranded wire, and repeating rolling and a heat treatment of at least 800° C. on the flat molded stranded wire a plurality of times.
摘要:
Disclosed herein is a method which enables permanent current junction of a tape-type oxide superconducting wire and suppresses reduction of its critical current. An end portion of a tape-type wire (10) to be joined is removed to expose oxide superconductor filaments. Another tape-type wire (10') to be joined with the wire (10) is processed in a similar manner. The tape-type wires (10, 10') are so superposed that the surfaces exposing the filaments face with each other, and the superposed portions are pressed in a direction perpendicular to principal surfaces of the tapes and heat treated at a temperature of 800.degree. to 900.degree. C., to be completely joined with each other.
摘要:
Provided are an oxide superconducting wire which maintains a high critical current density and has a small current drift with small ac loss when the same carries an alternating current and a method of preparing the same, and a cable conductor which is formed by assembling such oxide superconducting wires. The oxide superconducting wire is a flat-molded stranded wire which is formed by twisting a plurality of metal-coated strands consisting of an oxide superconductor, and is characterized in that the flat-molded stranded wire has a rectangular sectional shape, and a section of each strand forming the flat-molded stranded wire has an aspect ratio (W1/T1) of at least 2. The method of preparing this oxide superconducting wire comprises the steps of preparing a stranded wire by twisting a plurality of strands, each of which is formed by metal-coating an oxide superconductor or raw material powder therefor, flat-molding the prepared stranded wire, and repeating rolling and a heat treatment of at least 800° C. on the flat molded stranded wire a plurality of times.
摘要:
Provided is a joint which can decrease the number of kinds of parts. A bolt 5 has a shaft portion 14 which is constituted of a distal end portion on which male threads 14a are formed and a remaining portion 14b on which male threads are not formed. First and second joint members 2, 3 have the same shape. A shaft insertion hole 15 which is disposed on an abutting end surface side of the joint member and a threaded hole 16 which is communicated with the shaft insertion hole 15 and extends to an end surface of the joint member on a side opposite to an abutting end surface of the joint member are formed in the first and second joint members 2, 3.
摘要:
Disclosed is a composite sheet 1 composed of a substantially flat lower fibrous sheet 3 and an upper fibrous sheet 2 bonded to the lower fibrous sheet 3. The upper fibrous sheet 2 is three-dimensionally textured with a number of projections 5 and a number of depression 6 each of which is located between every adjacent two of the projections 5. The projections 5 and the depressions 6 alternate in both a first direction of the composite sheet 1 and a second direction perpendicular to the first direction. Each projection 5 has a pair of opposing first walls 51 parallel to the first direction and a pair of opposing second walls 52 parallel to the second direction. The basis weight of the first walls 51 is different from that of the second walls 52.
摘要:
There is provided an oscillator using a high-frequency crystal resonator which can satisfy the drive level needed for the crystal resonator and expand a variable frequency range. An oscillator having an oscillation circuit CC for oscillating the resonator SS is provided with a limiter circuit LM1 as a load of the resonator SS which is inductive and is a load circuit for limiting an oscillation amplitude. According to this configuration, the action of the limiter circuit LM1 allows satisfaction of the drive level needed for the crystal resonator and expansion of the variable frequency range.
摘要:
This photodiode array 10 includes quenching resistors 7 which are connected in series to respective avalanche photodiodes APDs, a peripheral wiring WL which surrounds a region in which the plurality of avalanche photodiodes APDs are formed, and a plurality of relay wirings 8 which are electrically connected to the peripheral wiring WL, so as to respectively connect at least two places of the peripheral wiring WL. One of an anode and a cathode of each avalanche photodiode APD is electrically connected to any one of the relay wirings 8 via the quenching resistor 7, and the other of the anode and the cathode of each avalanche photodiode APD is electrically connected to another electrode 6 provided on a semiconductor substrate.