Abstract:
Provided is a resin composition excellent in processability and productivity, which improves low crystallization rate and improves processability in forming such as injection molding or sheet forming. Provided is a polyester resin composition including a polyester resin (A), a crystallization promoter (B), and pentaerythritol (C).
Abstract:
A resin composition, which can achieve the crystallization effect of pentaerythritol, is provided with good workability.The resin composition includes a thermoplastic resin (A) and pentaerythritol particles (B), wherein 70% or more of the pentaerythritol particles (B) have a particle diameter of 100 μm or less.
Abstract:
A biodegradable polyester resin composition containing 30 to 60 parts by weight of (A) a polylactic acid, 25 to 45 parts by weight of (B) a poly-3-hydroxyalkanoate, and 5 to 25 parts by weight of (C) an aliphatic-aromatic polyester, based on 100 parts by weight in total of (A) the polylactic acid, (B) the poly-3-hydroxyalkanoate, and (C) the aliphatic-aromatic polyester. The biodegradable polyester resin composition further contains 0.05 to 20 parts by weight of (D) pentaerythritol, 10 to 40 pans by weight of (E) a silicate, and 0 to 3 parts by weight of (F) a compatibilizer having an epoxy group, relative to 100 parts by weight in total of (A) the polylactic acid, (B) the poly-3-hydroxyalkanoate, and (C) the aliphatic-aromatic polyester.
Abstract:
An object is to improve slow crystallization that is a drawback of polyhydroxyalkanoates, improve processability in mold processing, such as injection molding, improve processing speed, and suppress blooming from a obtaining molded article.Provided is an aliphatic polyester resin composition including a polyhydroxyalkanoate (A), a vinyl acetate-containing copolymer (B), and pentaerythritol (C), wherein the polyhydroxyalkanoate (A) and the vinyl acetate-containing copolymer (B) are immiscible.
Abstract:
Poly(3-hydroxyalkanoate) foam particles are obtained by: introducing a blowing agent into an aqueous dispersion in a pressure-resistant vessel, the aqueous dispersion containing a crosslinking agent and resin particles containing a poly(3-hydroxyalkanoate); heating the contents of the pressure-resistant vessel to a given temperature in a range of 130 to 150° C.; holding the contents of the pressure-resistant vessel at the given temperature for 5 to 55 minutes; and opening one end of the pressure-resistant vessel to discharge the contents of the pressure-resistant vessel into a low-pressure atmosphere and foam the resin particles. The poly(3-hydroxyalkanoate) is a mixture containing a poly(3-hydroxyalkanoate) copolymer and a poly(3-hydroxybutyrate) homopolymer at a weight ratio of 99:1 to 80:20, and the crosslinking agent is an organic peroxide which is a percarbonate.
Abstract:
An object of the present invention is to inhibit the blooming of pentaerythritol useful as a crystallization nucleating agent for biodegradable polyesters, which are decomposed into water and carbon dioxide by the action of microorganisms, in particular, for polyhydroxyalkanoates. Provided is a polyester resin composition including a polyhydroxyalkanoate (A), an acrylic compound (B), and pentaerythritol (C).
Abstract:
Disclosed herein is an aliphatic polyester resin composition that simultaneously improves slow crystallization, low impact strength, and low tensile elongation that are the drawbacks of a polyhydroxyalkanoate.The aliphatic polyester resin composition comprises: a polyhydroxyalkanoate (A); a graft copolymer (B); and pentaerythritol (C), wherein the graft copolymer (B) is obtained by graft polymerization of a vinyl-based monomer onto at least one rubber selected from the group consisting of a composite rubber (b1) comprising a polyorganosiloxane component and a polyalkyl(meth)acrylate component, an acrylic rubber (b2), and a diene-based rubber (b3) comprising a diene-based monomer.
Abstract:
An object of an embodiment of the present invention is to provide poly(3-hydroxyalkanoate)-based expanded particles and a poly(3-hydroxyalkanoate)-based foamed molded product both of which are obtained by a single expansion treatment and have a high expansion ratio. Provided are poly(3-hydroxyalkanoate)-based expanded particles and a poly(3-hydroxyalkanoate)-based foamed molded product both of which include a poly(3-hydroxyalkanoate) composition containing a non-ionic water-soluble polymer.
Abstract:
Provided are poly(3-hydroxyalkanoate) foam particles in which a gel fraction of the whole foam particles is from 30 to 80% by weight and a difference in gel fraction between inside and outside of the foam particles is 25% by weight or less. Preferably, the foam particles are particles crosslinked by an organic peroxide. Preferably, the organic peroxide has a 1 hour half-life temperature of 114 to 124° C., contains a carbonate group, and is liquid at room temperature.
Abstract:
A PHA copolymer which is slowly crystallized is improved in crystallization speed to improve the melt workability of the PHA copolymer in working such as injection molding, film molding, blow molding, fiber spinning, extrusion foaming or bead foaming, thereby improving the resultant articles in productivity. A method for the improvement is a method for producing a PHA mixture, including the step of culturing a microorganism having both of a gene encoding a PHA synthase that synthesizes a copolymer PHA (A) and that is derived from the genus Aeromonas, and a gene encoding a PHA synthase that synthesizes a PHA (B) different in melting point from the copolymer PHA (A) by 10° C. or more to produce, in a cell of the microorganism, two or more PHAs different in melting point from one another by 10° C. or more simultaneously.