Abstract:
The present invention provides a porous medium with increased hydrophobicity and a method of manufacturing the same, in which a micro-nano dual structure is provided by forming nanoprotrusions with a high aspect ratio by performing plasma etching on the surface of a porous medium with a micrometer-scale surface roughness and a hydrophobic thin film is deposited on the surface of the micro-nano dual structure, thus significantly increasing hydrophobicity. When this highly hydrophobic porous medium is used as a gas diffusion layer of a fuel cell, it is possible to efficiently discharge water produced during electrochemical reaction of the fuel cell, thus preventing flooding in the fuel cell. Moreover, it is possible to sufficiently supply reactant gases such as hydrogen and air (oxygen) to a membrane electrode assembly (MEA), thus improving the performance of the fuel cell.
Abstract:
There are provided a food container having a silicon incorporated diamond like carbon (Si-DLC) layer and a method thereof. The food container includes a container made of a plastic material; an intermediate thin layer formed on a surface of the container; and a Si-DLC layer formed on the intermediate thin layer. Accordingly, it is possible to provide porous plastic container having a Si-DLC layer and a manufacturing method thereof, which can implement high oxygen barrier properties and excellent mechanical characteristics by stably depositing a Si-DLC layer on a food container having lower surface energy without breaking the Si-DLC layer.
Abstract:
The present invention relates to a food container made of a plastic material and having a nano-structured hydrophobic surface, including: a plurality of nano-structures formed on a surface of the food container; and a first hydrophobic thin film coated on an upper side of the surface, on which the nano-structures are formed, and a manufacturing method thereof. According to the present invention, it is possible to provide the food container having the nano-structured hydrophobic surface capable of having excellent gas blocking performance, as well as hydrophobicity, and the manufacturing method thereof.
Abstract:
Disclosed is a membrane electrode assembly with enhanced hydrophobicity and a method for manufacturing the same. In particular, a nano pattern with a high aspect ratio is formed in a catalyst support on the surface of a catalyst layer constituting the membrane electrode assembly using plasma etching. A hydrophobic thin film is then formed on the nano pattern formed in the catalyst support.
Abstract:
The present disclosure relates to a rotating type foreign substance collection equipment, and according to an embodiment of the present disclosure, there is an effect in separating and collecting foreign substances such as oil from foreign substance-fluid mixtures at high speeds by the separation membrane that traps foreign substances such as oil that float in water while allowing sea water or river water to pass through and be discharged.
Abstract:
The present invention provides a porous medium with increased hydrophobicity and a method of manufacturing the same, in which a micro-nano dual structure is provided by forming nanoprotrusions with a high aspect ratio by performing plasma etching on the surface of a porous medium with a micrometer-scale surface roughness and a hydrophobic thin film is deposited on the surface of the micro-nano dual structure, thus significantly increasing hydrophobicity. When this highly hydrophobic porous medium is used as a gas diffusion layer of a fuel cell, it is possible to efficiently discharge water produced during electrochemical reaction of the fuel cell, thus preventing flooding in the fuel cell. Moreover, it is possible to sufficiently supply reactant gases such as hydrogen and air (oxygen) to a membrane electrode assembly (MEA), thus improving the performance of the fuel cell.
Abstract:
There are provided a food container having improved oxygen barrier properties and a manufacturing method thereof. The food container includes a container made of a plastic material, a buffer thin layer formed on a surface of the container and having a thickness of 5 to 30 nm, and an oxygen barrier thin layer formed on the buffer thin layer. Accordingly, it is possible to provide a food container and a manufacturing method thereof, which can remarkably improve oxygen barrier properties by depositing, using a plasma method, an oxygen barrier thin layer on a porous plastic container having low surface energy without breaking the oxygen barrier thin layer.
Abstract:
There are provided a food container having a silicon incorporated diamond like carbon (Si-DLC) layer and a method thereof. The food container includes a container made of a plastic material; an intermediate thin layer formed on a surface of the container; and a Si-DLC layer formed on the intermediate thin layer. Accordingly, it is possible to provide porous plastic container having a Si-DLC layer and a manufacturing method thereof, which can implement high oxygen barrier properties and excellent mechanical characteristics by stably depositing a Si-DLC layer on a food container having lower surface energy without breaking the Si-DLC layer.
Abstract:
Disclosed is a membrane electrode assembly with enhanced hydrophobicity and a method for manufacturing the same. In particular, a nano pattern with a high aspect ratio is formed in a catalyst support on the surface of a catalyst layer constituting the membrane electrode assembly using plasma etching. A hydrophobic thin film is then formed on the nano pattern formed in the catalyst support.
Abstract:
Disclosed is a fuel cell with enhanced mass transfer characteristics in which a highly hydrophobic porous medium, which is prepared by forming a micro-nano dual structure in which nanometer-scale protrusions with a high aspect ratio are formed on the surface of a porous medium with a micrometer-scale roughness by plasma etching and then by depositing a hydrophobic thin film thereon, is used as a gas diffusion layer, thereby increasing hydrophobicity due to the micro-nano dual structure and the hydrophobic thin film. When this highly hydrophobic porous medium is used as a gas diffusion layer for a fuel cell, it is possible to reduce water flooding by efficiently discharging water produced by an electrochemical reaction of the fuel cell and to improve the performance of the fuel cell by facilitating the supply of reactant gases such as hydrogen and air (oxygen) to a membrane-electrode assembly (MEA).